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Abstract: Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret 
or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode 
decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method 
to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare 
the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural 
networks. For both cases, the classification rate is improved about 20%. 

1 INTRODUCTION 

Electroencephalogram (EEG) signals recorded from 
the scalp, commonly present different interference 
signals due to muscle artifacts, such as eye blinks or 
eye movement. Electric potentials due to these 
artifacts can be orders of magnitude larger than the 
EEG and can propagate across the scalp, masking 
and distorting brain signals (Croft and Barry, 2000). 

 This paper focuses on improving the quality of 
the data, removing artifacts from EEG data using a 
new signal processing technique, Multivariate 
Empirical Mode Decomposition (mEMD). This 
technique is an extension of the Empirical Mode 
Decomposition (EMD), and provides a 
decomposition of the original EEG data into several 
oscillatory modes computed along multichannel data 
(Rehman and Mandic, 2010). Then the efficiency of 
the proposed method of cleaning artifacts is 
evaluated on real EEG data from an Alzheimer 
Disease (AD) data base. The evaluation of this 
cleaning procedure is calculated in terms of 
classification rate. Obtained results with clean data 
are much better that those obtained with raw data, 
hence the detection of AD is simplified.   

 Recently it was shown that EMD is a good 
method to separate eye movements from 
neurophysiological signals as pointed out in 

(Rutkowski et al., 2009a, Rutkowski et al., 2009b, 
Molla et al., 2012), where results were obtained 
comparing the extracted modes with the modes of 
the EOG.  

A previous study using mEMD (Gallego-Jutglà 
et al., 2011) presented promising results using this 
decomposition on simulated EEG data, where the 
cleaned data presented always a correlation higher 
than 0.8 with the simulated data without artifacts. 

Another study had used mEMD for Seizure 
detection in EEG signals (Rehman et al., 2010c). In 
this study, Hilbert Huang transform and mEMD are 
combined to extract spectral features form 
multichannel EEG signals. The spectral feature used 
is the mean frequency of the signals derived from 
the Hilbert-Huang spectrum, and the method have 
shown to be helpful for epileptic seizure detection. 
At the end of this article, it is also suggested that 
some artifacts can be removed by subtracting the 
unwanted signals from the decomposition. 

This paper is organized as follows. First, 
methods used, including EMD and mEMD 
description, the cleaning method, the synchrony 
measure used and the classifiers used are presented 
in Section 2. Section 3 describes the experimental 
results obtained. Finally, discussion and conclusions 
are depicted in Section 4 and Section 5 respectively. 
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2 METHODS 

To eliminate EEG artifacts, the use of mEMD is 
proposed.  mEMD is a new technique to decompose 
EEG data based on EMD. mEMD decomposition is 
applied in an Alzheimer disease data base and then 
data is cleaned using the cleaning procedure 
presented in (Gallego-Jutglà et al., 2011). It is 
important to note that now we deal with any kind of 
artefacts and not only eyeblinks, therefore we 
generalise the method to be more useful. In order to 
evaluate the improvement of the cleaning procedure, 
we don’t have a reference cleaned signals to 
compare with, phase synchrony is computed and 
then a classifier is set up in order to discriminate 
between Alzheimer disease subjects and control 
subjects. Two types of classifiers, Linear 
Discriminant Analysis (LDA) and Neural Network 
(NN), are explored in order to see the effect of the 
cleaning method. 

EEG dataset is composed of 15 healthy Ctrl 
subjects and 15 patients with mild AD. The EEG 
time series were recorded using 21 electrodes at a 
sampling frequency of 128 Hz.  

2.1 Empirical Mode Decomposition 

EMD algorithm is a method designed for multiscale 
decomposition and time –frequency analysis, which 
can analyze nonlinear and non-stationary data 
(Huang et al., 1998). 

With this method, any time-series data set can be 
decomposed into a finite and often small number of 
oscilatory modes. These oscillatory modes are called 
Intrinsic Mode Functions (IMFs). IMFs are defined 
so as to exhibit locality in time and to represent a 
single oscillatory mode. Each IMF satisfies two 
basic conditions: (i) the number of zero-crossings 
and the number of extrema must be the same or 
differ at most by one in the whole dataset, and (ii) at 
any point, the mean value of the envelope defined by 
the local maxima and the envelope defined by the 
local minima is zero (Huang et al., 1998). 

The EMD algorithm (Huang et al., 1998) for the 
signal x(t) can be summarized as follows. 

(i) Determine the local maxima and minima of   
x(t); 

(ii) Generate an upper and a lower signal 
envelope by connecting the local maxima and 
minima computed previously respectively by an 
interpolation method; 

(iii) Compute the local mean , by 
averaging the upper and lower signal envelopes; 

(iv) Subtract the local mean from the data: ℎ = − ; 
(v) If ℎ  obeys the stopping criterion, then 

define = ℎ  as an IMF, otherwise set = ℎ  and repeat the process from step i. 

Then, the empirical mode decomposition of a 
signal x(t) can be written as: 

x t = IMF t + ε t  (1)

Where n is the number of extracted IMFs, and the 
final residue ε t  is the mean trend or a constant.  

2.2 Multivariate Empirical Mode 
Decomposition (mEMD) Applied to 
EEG Signals 

Multivariate Empirical Mode Decomposition, is an 
extension for multivariate signals of  EMD.  

Even though EMD has achieved optimal results 
in data processing (Diez et al. 2009, Molla et al., 
2010), several shortcomings are presented when this 
technique is used in multichannel data sets such as 
EEG. The IMFs from different time series do not 
necessarily correspond to the same frequency, and 
different time series may end up having a different 
number of IMFs. These shortcomings complicate the 
use of this technique to work with multichannels  
data sets, because it is difficult to match the different 
obtained IMFs from different channels (Mutlu and 
Aviyente, 2011). 

To solve the presented shortcomings of working 
with multichannels data sets, several extensions of 
EMD have been proposed. This extensions are 
Bivariate Empirical Mode Decomposition (Molla et 
al. 2010), to decompose two time series at the same 
time, and Trivariate Empirical Mode Decomposition 
(Rehman and Mandic, 2010a), to decompose three 
time series at the same time. Recently, for 
multichannel data sets, such as EEG, an extension of 
EMD to mEMD was proposed (Rehman and 
Mandic, 2010b).  

In mEMD the local mean is computed by 
tanking an average of upper and lower envelopes 
obtained from all the sensors. The upper and lower 
envelopes, in turn are obtained by interpolating 
between the local maxima and minima. However, in 
general, for multivariate signals, the local maxima 
and minima may not be defined directly. To deal 
with these problems multiple n-dimensional 
envelopes are generated by taking signal projections 
along different direction in n-dimensional spaces 
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(Rehman and Mandic, 2010b). mEMD is the 
technique used in this paper to compute all the 
decompositions. 
The algorithm (Rehman and Mandic, 2010b) can be 
summarized as follows: 

(i) Choose a suitable pointset for sampling on an − 1 	sphere (this − 1 	 sphere resides in an  
dimensional Euclidean coordinate system). 

 (ii) Calculate the projection, 	p t , of the 

input signal v t  along the direction vector, x  

for all k giving p t . 

(iii) Find the time instants t  corresponding to 
the maxima of the set of projected 

signals	p t .  

(iv) Interpolate t , v t  to obtain 

multivariate envelope curves	e t . 

(v) For a set of K direction vectors, the mean of 
the envelope curves is calculated as t =1 K⁄ ∑ e t   

(vi) Extract the detail  using = −
. If the detail 	fulfills the stopping criterion 

for a multivariate IMF, apply the above procedure 
to	 − , otherwise apply it to . 

 
Then, the mEMD of a signal x 	can be written as 
detailed in equation 1 

The used stopping criterion is defined in (Rilling 
et al., 2003).  

2.3 Cleaning Pprocedure 

The used cleaning procedure was previously 
presented in (Gallego-Jutglà et al., 2011). In this 
article the proposed procedure was applied to 
simulated EEG data with eyeblink artefacts. Now, 
the extension to any kind of artefacts and the 
performance on real EEG data is evaluated. 

The cleaning procedure is based on mEMD and 
seeks the common modes which are present in all 
the electrodes. Here the key idea is that if a mode is 
present in all the electrodes, it is probably due to 
artifacts and not to EEG signals, so this mode is 
suppressed in the reconstruction process. 

The cleaning procedure can be summarized as 
follows: 

(i) Apply mEMD to raw EEG data of N 
electrodes, in order to obtain M oscillatory modes of 
the multivariate data. 

(ii) Construct a matrix containing the same mode 
for all the channels. Therefore a total of M matrices 
are obtained.  

(iii) Calculate the Correlation Matrix (CM) of 
each one of these previous matrices, obtaining ∈ ℝ · ·  

(iv) Compute the Communality Index ∈ ℝ , 
containing the mean correlation of each mode for all 
the sensors. The CI is computed using the following 
expression: 

= 1 | | (2)

(v) Normalize CI between 0 and 1. 
(vi) Threshold CI in order to find which of these 

modes are common within all the channels. Modes 
with high correlation |r| > 0.8  are eliminated 

(vii) Reconstruct clean signals without taking 
into account the eliminated modes 

 
The proposed cleaning procedure was applied 
independently to all the subjects contained in the 
data base. 

2.4 Measure 

In order to evaluate the efficiency of the proposed 
cleaning method, each one of the subjects was 
characterized with a measure. 

Different studies have shown that Alzheimer 
disease cause a change in EEG synchrony, so to 
characterize the presents subjects in the data base, 
the phase synchrony measure was used. 

Phase synchrony measure the phase dependence 
between two time series x and y, computing the 
dependence between their instantaneous phases  
and . Even though the amplitudes of x and y are 
independent, their instantaneous phases may be 
synchronized. The instantaneous phase  of a time 
serie x may be extracted as: = arg +  (3)

where  is the Hilbert transform of x. The phase 
synchrony index  for two instantaneous phases  
and  is defined as: = 	∈ 0,1  (4)

where n  and m are integers (usually mn 1 ). 

The phase synchrony value that characterized 
each subject was computed as presented in (Dauwels 
et al., 2009). For each subject, the synchrony 
between all the possible pairs of electrodes was 
computed. Then, 5 regions of the head were defined 
(frontal, right temporal, left temporal, central and 
occipital areas). To evaluate local synchrony, the 
average of the synchrony values obtained between 
the electrodes of each region was computed. Then, 
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to compute the global synchrony, an average of the 
computed local synchrony was done. 

Phase synchrony was computed in different 
frequency bands, according to the classical used 
division on  (2 to 4 Hz.),  (4 to 8 Hz.), 1 (8 to 10 
Hz.), 2 (10 to 12 Hz.) and  (12 to 25 Hz.) bands. 
Signals were band-pass filtered between the selected 
frequencies ranges. 3rth order Butterworth filters 
were used, as they can be implemented easily and 
offer good transition band characteristics at low 
coefficient orders. 

2.5 Classification 

Two different types of classifiers were used to 
classify the synchrony measures obtained with the 
raw and the clean EEG data. Synchrony measures 
obtained in the 5 frequency bands were used as input 
features of the classifier.  

2.5.1 Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a well-
known scheme for feature extraction and dimension 
reduction. It has been used widely in many 
applications involving high-dimensional data, such 
as face recognition and image retrieval. Classical 
LDA projects the data onto a lower-dimensional 
vector space such that the ratio of the between-class 
distances to the within-class distance is maximized, 
thus achieving maximum discrimination. The 
optimal projection (transformation) can be readily 
computed by applying the eigendecomposition on 
the scatter matrices. See (Duda et al., 2000, 
Fukunaga, 1990) for details on the algorithm. 

LDA was used to classify the computed 
synchrony measures obtained from the EEG data of  
Alz and Ctr subjects. As the number of subjects in 
the data base is small, Leave-One-Out (LOO) 
procedure was used. In this LOO crossvalidation 
scheme of N observations, N-1 are used for training 
and the last is used for evaluation. This process is 
repeated N times, leaving one different observation 
for evaluation each time. The mean success 
classification value in percentage (%) is obtained as 
a final result. 

2.5.2 Neural Network 

In recent years several classification systems have 
been implemented using different techniques, such 
as Neural Networks. 

The widely used Neural Networks techniques are 
very well known in pattern recognition applications. 

An artificial neural network (ANN) is a 
mathematical model that tries to simulate the 
structure and/or functional aspects of biological 
neural networks. It consists of an interconnected 
group of artificial neurons and processes information 
using a connectionist approach to computation. In 
most cases an ANN is an adaptive system that 
changes its structure based on external or internal 
information that flows through the network during 
the learning phase. 

Neural networks are non-linear statistical data 
modelling tools. They can be used to model complex 
relationships between inputs and outputs or to find 
patterns in data. 

One of the simplest ANN is the so called 
perceptron that consist of a simple layer that 
establishes its correspondence with a rule of 
discrimination between classes based on the linear 
discriminator. However, it is possible to define 
discriminations for non-linearly separable classes 
using multilayer perceptrons (MLP). 

The Multilayer Perceptron (Multilayer 
Perceptron, MLP), also known as Backpropagation 
Net (BPN), is one of the best known and used 
artificial neural network model as pattern classifiers 
and functions approximators (Lippman, 1987), 
(Freeman and Skapura, 1991). It belongs to the so-
called feedforward networks class, and its topology 
is composed by different fully interconnected layers 
of neurons, where the information always flows 
from the input layer, whose only role is to send input 
data to the rest of the network, toward the output 
layer, crossing all the existing layers (called hidden 
layers) between the input and output. Essentially the 
inner layers are responsible for carrying out 
information processing, extracting features of the 
input data. 

Although there are many variants, usually each 
neuron in one layer has directed connections to the 
neurons of the subsequent layer but there is no 
connection or interaction between neurons on the 
same layer (Bishop, 1995, Hush and Horne, 1993). 

In this work we have used a multilayer 
perceptron with one hidden layer of 30 (empirically 
obtained value) different neurons (nodes). Each 
neuron is associated with weights and biases. These 
weights and biases are set to each connections of the 
network and are obtained from training in order to 
make their values suitable for the classification task 
between the different classes. 

The number of input neurons is equal to the 
number of frequency bands considered, and the 
number of output neurons is just one as we needs to 
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Figure 1: Comparison of the cleaning procedure. The top 
image presents a 5-sec portion of raw EEG time series for 
an Alzheimer subject. The bottom image presents the 
same 5-sec of data after applying the cleaning procedure. 

discriminate between only two classes (binary 
problem). 

For the neural network classifier, again the LOO 
crossvalidation was used. To compute the 
classification rate the LOO was computed 3 times, 
the final classification was the mean of these 3 
different values.  

3 RESULTS 

The proposed cleaning method was applied to all the 
subjects contained in the data base. Then the phase 
synchrony was computed for raw and clean data and 
the classification of each type of data was computed. 

The improvement of the quality of the data after 
applying the cleaning procedure can be seen in 
Figure 1, where some of the visible artifacts are not 
present in the image of the clean data (bottom 
image). The eliminated IMFs during the cleaning 
process for this subject are presented in Figure 2, 
where 11 IMFs were obtained. The used threshold |r| > 0.8  is presented with a dotted line. 

As can be seen in Figure 2, the presented CI has 
several values higher than the threshold. The IMF 
that hold the lower frequencies of the decomposition 
(IMF7, IMF8, IMF9, IMF10, IMF11) and the 
residue  ε t , are the ones that are eliminated for 
this subject during the reconstruction process. IMF 5 
was also eliminated by the cleaning process. For all 
the subjects the eliminated modes were those that 
hold the low frequency oscillation. 

 

Figure 2: Obtained Communality Index for an Alzheimer 
diseases patient. 11 IMF where obtained during the 
decomposition. Eliminated modes during the cleaning 
procedure are the ones that present |r|>0.8.  The threshold 
|r|>0.8 is presented with a dotted line. 

Obtained Classification Rates (CR) of synchrony 
measures after classifying each type of data with the 
two classifiers, LDA and NN, are presented in 
Figure 3. With LDA, 56.67% of CR was obtained 
with raw data and 76.67% was obtained with clean 
data. On the other hand, the results obtained with 
NN presented a CR of 58.89% for raw data and 80% 
with clean data. 

 The presented results improve the classification 
rate for both classifiers. For LDA an improvement of 
20% was obtained and for NN an improvement of 
21.11%. 

4 DISCUSSION  

The cleaning method presented an improvement of 
the quality of the data. The classification results 
obtained for both types of classifiers presented better 
results for the clean data, than the classification rate 
obtained with the raw data. 

The eliminated modes presented in Figure 2 and 
the modes eliminated from all the subjects, 
correspond to low frequency oscillation. These 
results are consistent with previous knowledge of 
artifacts, in which the artifact interference is found 
to be in the low frequencies.  

These results point out that the criterion used to 
select the modes to be discarded, based on the 
Communality Index (CI), is reliable and can be used 
for any kind of artifacts.    

Also, results emphasizes that the use of mEMD 
to correct artifacts may be a good procedure for EEG 
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Figure 3: Classification Rates obtained after classifying 
the synchrony values with LDA and NN. In both 
classifiers, grey bars correspond to results obtained with 
raw EEG data, black bars correspond to results obtained 
with clean EEG data. 

signal preprocessing, a necessary step to be taken 
before any kind of EEG signal analysis. 

5 CONCLUSIONS 

In this paper a procedure for removing artifacts from 
EEG data is tested in real data. This method is based 
on an EEG decomposing technique, which allows 
flexible signal decomposition of the original time 
series in different oscillatory modes. The so-
obtained components from each EEG channel have 
been analyzed and those that were present in all the 
electrodes have been removed from the 
reconstructed signal. Then phase synchrony has been 
computed for all the subjects, and the obtained 
values have been classified using two different 
classifiers, linear discriminant analysis and neural 
network. 

Future work will include the comparison of this 
method with ICA-based cleaning procedures (Solé-
Casals et al., 2010), or Wavelet-based cleaning 
procedures (Krishnaveni et al., 2006, Vialatte et al., 
2008).  

Of course, it is important to point out that the 
data set at hand is fairly small. A larger sample size 
and a more diverse data set will be used in order to 
generalize the results of this study. 
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