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Superconducting atomic contacts under microwave irradiation
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DSM/DRECAM, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France

2Department of Physics, University of Colorado at Denver, Denver, Colorado 80204, USA
(Dated: August 29, 2006)

We have measured the effect of microwave irradiation on the dc current-voltage characteristics
of superconducting atomic contacts. The interaction of the external field with the ac supercurrents
leads to replicas of the supercurrent peak, the well known Shapiro resonances. The observation of
supplementary fractional resonances for contacts containing highly transmitting conduction channels
reveals their non-sinusoidal current-phase relation. The resonances sit on a background current
which is itself deeply modified, as a result of photon assisted multiple Andreev reflections. The
results provide firm support for the full quantum theory of transport between two superconductors
based on the concept of Andreev bound states.

PACS numbers: 74.50.+r, 74.25.Fy, 74.45.+c, 74.78.Na, 73.63.-b

A thorough and unifying view of superconducting elec-
trical transport emerged in the last fifteen years in the
framework of mesoscopic superconductivity. It is based
on the concept of Andreev reflection, the microscopic pro-
cess which couples the dynamics of electrons and holes.
In particular, the Josephson currents flowing between two
weakly coupled superconductors are described as arising
from Andreev bound states forming in each conduction
channel of the coupling structure [1]. The theory pre-
dicts the time-dependent current through a voltage bi-
ased short single conduction channel of arbitrary trans-
mission probability [2], and in particular the interplay
between these ac Josephson currents and a microwave
external signal [3]. Although ac supercurrents have been
known and detected since the early days of Josephson
circuits [4], this modern view has the advantage of being
completely general as it applies to all possible coupling
structures, which can always be decomposed, at least in
principle, into a set of independent channels. In this Let-
ter we present a test of these predictions carried out on
single atom contacts between two superconducting elec-
trodes [5]. These contacts are model systems which allow
for a direct comparison of theory and experiment, as one
can vary and measure [6] their “mesoscopic PIN”, i.e. the
set of transmission coefficients {τi} characterizing their
conduction channels.

In a single short channel of transmission τ between
two reservoirs with superconducting phase difference δ,
two Andreev states contribute to the Josephson coupling.

They have energies E± (δ, τ) = ±∆
√

1 − τ sin2(δ/2) ly-

ing inside the superconducting gap extending from -∆
to ∆. At a given δ the two states carry opposite cur-
rents I± (δ, τ) = (1/ϕ0) ∂E±/∂δ, where ϕ0 = ~/2e is the
reduced flux quantum, and the net current through the
channel results from an imbalance of their occupation
numbers. For a perfect voltage bias V the phase evolves
in time according to δ (t) = ωJ t where ωJ = V/ϕ0 is
the Josephson frequency. Because the current-phase re-

lation of each state is periodic, there are ac supercur-
rents at the Josephson frequency and all its harmon-
ics, and the current can be written as a Fourier series
I(V, τ, t) =

∑

m

Im(V, τ)eimωJ t [7]. The sine components

arise from the adiabatic evolution of the system on the
ground Andreev state, whereas the cosine components
originate in non-adiabatic (Landau-Zener) transitions be-
tween the levels induced by the dynamics of the phase.
These cosine terms become sizeable only for highly trans-
mitting channels, and lead in particular to a dc current
at finite voltage. This perfect voltage-bias, non-adiabatic
theory, explains quantitatively [6], in terms of multiple
Andreev reflections (MAR) [8], the strong current non-
linearities known as the “subgap structure” observed at
finite voltage in all kinds of SNS structures.

In the experiments presented here, we monitor the
modifications under microwave irradiation of the dc
current-voltage characteristics of voltage biased alu-
minum atomic contacts obtained using microfabricated
break junctions [9]. The principle of the experimen-
tal setup is shown schematically in Fig. 1. The break
junctions are embedded into a biasing circuit of low
impedance (the so-called “environmental impedance”)
designed to approach the perfect voltage bias condition
assumed in the theory. The contact is characterized by
its critical current I0 ({τi}), typically a few tens of nA. It
is placed in series with a microfabricated resistor r and
this combination is shunted by a microfabricated capac-
itor C and a surface mounted resistor R. In practice we
have used two setups, which differ essentially in the way
the current through the atomic contact is measured. In
the first type (A), the current is measured by means of
an array of 100 dc SQUIDs [10], as described in [11]. In
the second type (B), the current is obtained through the
voltage drop across the resistor r, directly measured with
low-noise voltage amplifiers [12]. Details can be found in
[13]. Both setups give essentially the same results.

A typical I(V ) of a one atom aluminum contact, with
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FIG. 1: Simplified schematics of the electromagnetic envi-
ronment seen by the atomic contact (double-triangle symbol).
Dashed grayed box shows the microfabricated on-chip envi-
ronment. Dotted box shows components cooled down to base
refrigerator temperature T0 . A low-frequency voltage source
coupled through a large resistor provides a low-frequency cur-
rent bias. Microwaves are injected through a small coupling
capacitor.

no applied microwaves, is shown in Fig. 2. The strong
non-linearities arising at the thresholds V = 2∆/ne of
the different MAR processes allow to determine the gap
∆ [14] and the full {τi} [6]. At small scale (inset of
Fig. 2), the dc Josephson current manifests itself as a
peak with a finite width. This physics is well-understood
as due to phase fluctuations caused by the noise in the
environmental impedance supposed to be at a finite tem-
perature Te. The theory [15], developed initially for a
purely resistive environment, is based on the solution of
a Langevin equation for the dynamics of the phase, which
diffuses along the Josephson potential. It has been thor-
oughly checked experimentally in the case of tunnel junc-
tions [11], and for structures containing only channels of
small or intermediate transmission [16]. Note that this
is an adiabatic theory, as it does not include the effect of
Landau-Zener transitions to the excited Andreev levels
that are essential to explain the experimental results in
the case of highly transmitting channels [16]. The theory
has been extended to the case of structures containing
ballistic channels [17] and to deal with more general en-
vironments [18]. The important fact is that the size of
the supercurrent peak diminishes quite rapidly with the
ratio between the Josephson energy ϕ0I0 and the ther-
mal energy kBTe available in the dissipative elements of
the environment. As shown in the inset of Fig. 2, the
agreement between the experimental data and the calcu-
lated phase diffusion curves using the independently mea-
sured values of {τi}, r, C and R is excellent. However,
in the present experiments the environment temperature
extracted through this analysis was always significantly
above that of the refrigerator [19].

When microwaves are applied the whole I(V ) is deeply
modified. As shown in Fig. 3, sharp resonances appear at
well defined voltages which scale with the microwave fre-
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FIG. 2: (color online). Full lines: current-voltage character-
istic of an Al atomic contact measured in type B setup at
refrigerator temperature T0 = 20 mK. Grayed line: best
fit using zero temperature MAR theory, obtained for PIN
{0.389, 0.238, 0.055} and ∆ = 178.2 µeV. Inset: zoom on the
supercurrent peak. Grayed line: best fit using environment
temperature Te = 133 mK in phase diffusion theory.

quency ω. The amplitude of these resonances, and of the
supercurrent peak itself, oscillates with the amplitude of
the microwave field. The non-adiabatic theory [2] has
been extended [3] to consider a perfect voltage bias con-
taining both a constant component V and an oscillating
one A cos (ωt), in which case the phase evolves in time ac-
cording to δ (t) = ωJ t+2α sin (ωt) where α = A/ (2ϕ0ω).
The time-dependent current becomes [3]

I(V, α, τ, ω, t) =
∑

m,n

In
m(V, τ, α, ω)ei[mωJ+nω]t. (1)

In this case of perfect voltage bias, the dc com-
ponent can be explicitly decomposed into a continu-
ous background I0

0 (V, τ, α, ω) (which for α = 0 corre-
sponds to the MAR current), plus a sum of singularities
In
m(V, τ, α, ω)δ

(

V − n
m

ϕ0ω
)

which correspond to the well
known Shapiro resonances [20] arising from the beatings
between the Josephson ac currents and the external mi-
crowave probe when their frequencies are commensurate
(mωJ = nω). For a contact containing only low and in-
termediate transmitting channels (all τ ’s< 0.5), the pre-
dicted current-phase relation is almost sinusoidal and the
m = 1 component is the only sizeable one in the super-
current. Therefore, like in the well-known case of tunnel
junctions, Shapiro resonances appear centered at integer
multiples of the Josephson voltage VJ = ϕ0ω determined
by the external frequency, as shown in the lower panel
of Fig. 3. Obviously, the shape of the resonances cannot
be understood within the constant bias theory [3] which
does not allow for phase fluctuations. However, as shown
by the underlying grayed line in Fig. 3, the shape and size
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FIG. 3: (color online). Full lines: I(V )s measured under
microwave excitation for two different contacts, refrigerator
temperature T0 = 20 mK. Middle axis: voltage in Joseph-
son voltage units (VJ = ϕ0ω). Upper and bottom axis:
voltage in µV. Upper panel: contact on a type A sam-
ple, PIN {0.992, 0.279, 0.278}, ∆ = 177 µeV, α = 0.43,
ω/2π = 9.3156 GHz. Inset: zoom on the small Shapiro res-
onances at V/VJ = 1/3, 1/2. Grayed lines, predictions of
the mapping model with temperature Te = 200 mK. Lower
curve: Same sample as in Fig. 2, but different run and con-
tact with PIN {0.573, 0.233, 0.037}, ∆ = 179.7 µeV, α = 0.86,
ω/2π = 4.892 GHz. Grayed line: phase diffusion theory [18]
with environment temperature Te = 120 mK.

of these resonances can be perfectly accounted for using
the theory by Duprat and Levy Yeyati [18] who have ex-
tended the Fokker-Planck treatment of [15] to include the
microwave drive. For these small transmissions there is
essentially no MAR current in the voltage range of the
Shapiro resonances, and this adiabatic theory works well.
For small transmissions the amplitude of the n-resonance
varies with the reduced microwave probe amplitude α ba-
sically as a Bessel function of order n (data not shown),
which allows for a calibration of the microwave driving
current. In the top panel of Fig. 3 we show the results
on a contact containing a highly transmitting channel.
The most important qualitative fact is the appearance of
small resonances at fractional multiples of the Josephson
voltage. These so-called fractional Shapiro resonances
are a direct consequence of the deviation of the current-
phase relationship from a pure sine function. The reso-
nances occur at voltages for which there is an important
MAR current, which is itself modified by the microwave
field, and the current cannot be decomposed into two dis-
tinct contributions as before. As there exists no theory
dealing with this situation of non-adiabatic phase diffu-
sion in presence of microwaves, we have developed an
empirical model in which the resonances are viewed as
replicas of the supercurrent peak. We take into account
the effects of the environment by mapping the dynamics
of the phase around each resonance into the dynamics
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FIG. 4: (color online). Full lines: measured differential
conductance of contact with PIN {0.696, 0.270, 0.076} and
∆ = 177.6 µeV. Upper curve (shifted upwards by 150 µS): no
microwaves. Lower curve: under microwave irradiation with
α = 0.70, ω/2π = 8.2935 GHz. Grayed lines: predictions of
PAMAR theory, with no adjustable parameters. The theory
includes neither the negative contribution of the Josephson
peak at low voltages, nor the Shapiro resonances.

around zero voltage in absence of microwaves. In other
words, we suppose that the phase fluctuates around the
deterministic dynamics imposed by an hypothetical per-
fect voltage bias (both dc and microwave). Under this
hypothesis, the system is governed by a Langevin equa-
tion similar to the one describing the dynamics in ab-
sence of microwaves, differing simply by an offset in volt-
age n

m
VJ and the following scaling of the parameters:

For each n
m

resonance, the Josephson critical current is
replaced by its maximum amplitude predicted by the per-
fect bias, non-adiabatic theory [3] for the measured {τi},
and most importantly, the environment temperature Te

has to be replaced by an effective temperature mTe [13].
This means that fractional Shapiro resonances are very
rapidly washed out by thermal fluctuations [21], as com-
pared to the integer resonances. The underlying grayed
lines of the upper panel in Fig. 3 are the predictions of
this mapping approach, the environment temperature be-
ing the only adjustable parameter. The best fit to the
data is obtained assuming an environment temperature
of Te = 200 mK instead of the actual temperature read
by the thermometers T0 = 20 mK. A linear background
term has also been added to account, at least partially, for
the background current on which the Shapiro resonances
superimpose. The model describes the general trends of
the experimental results. In particular the amplitude of
the integer resonances as a function of the amplitude of
the microwave field are quite well accounted for (data not
shown). However, the amplitude of the fractional reso-
nances is too small to make a quantitative comparison
with theory.

For the typical microwave frequencies (< 12 GHz) and
amplitudes used here, the Shapiro resonances are ob-
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served over a small voltage range (|eV | < 0.2∆). How-
ever, at larger voltages there is still a large effect of the
irradiation on the I(V ). Figure 4 shows a comparison
of the measured and calculated differential conductance
dI/dV , in presence of microwaves. With no microwaves,
the onsets of the different MAR processes of Fig. 2 ap-
pear as peaks on the differential conductance curve. In
presence of microwaves, satellite peaks appear around
them, at voltages V = (2∆ ± m~ωr)/2ne. They corre-
spond to the absorption or emission of m photons during
the MAR process which transfers n electronic charges,
i.e. to photon-assisted MAR processes (PAMAR). The
experimental results are very well reproduced by the dc
component I0

0 (V, τ, α, ω) of Eq. 1, with no adjustable
parameters. Note that the theory does not consider the
effect of thermal fluctuations of the phase. For all the
contacts we have measured, the agreement between the-
ory and experiment is as good as shown in Fig. 4. Al-
though these multiphoton processes have been already
observed [22] and identified [23], to our knowledge this is
the first direct quantitative comparison between theory
and experiment.

In conclusion, the ability of tuning and measuring
the transmission of the few channels accommodated by
atomic contacts allows to compare, with no adjustable
parameters, experimental results with the predictions of
the modern theory of the Josephson effect. The obser-
vation of fractional Shapiro resonances is clear indica-
tion of the occurrence of supercurrents at harmonics of
the Josephson frequency in contacts of large transmis-
sion. Furthermore, we find quantitative agreement be-
tween our results and the predictions of the theory of
photon-assisted multiple Andreev reflections. The results
illustrate the power of this modern view, which is able
to describe both dissipative and non-dissipative currents,
simply in terms of occupation of Andreev levels.
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C. Cuevas, R. Duprat, G. Rubio Bollinger, A. Mart́ın
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