13 research outputs found

    Characteristics of white blood cell count in acute lymphoblastic leukemia : A COST LEGEND phenotype-genotype study

    Get PDF
    Background White blood cell count (WBC) as a measure of extramedullary leukemic cell survival is a well-known prognostic factor in acute lymphoblastic leukemia (ALL), but its biology, including impact of host genome variants, is poorly understood. Methods We included patients treated with the Nordic Society of Paediatric Haematology and Oncology (NOPHO) ALL-2008 protocol (N = 2347, 72% were genotyped by Illumina Omni2.5exome-8-Bead chip) aged 1-45 years, diagnosed with B-cell precursor (BCP-) or T-cell ALL (T-ALL) to investigate the variation in WBC. Spline functions of WBC were fitted correcting for association with age across ALL subgroups of immunophenotypes and karyotypes. The residuals between spline WBC and actual WBC were used to identify WBC-associated germline genetic variants in a genome-wide association study (GWAS) while adjusting for age and ALL subtype associations. Results We observed an overall inverse correlation between age and WBC, which was stronger for the selected patient subgroups of immunophenotype and karyotypes (rho(BCP-ALL )= -.17, rho(T-ALL )= -.19; p < 3 x 10(-4)). Spline functions fitted to age, immunophenotype, and karyotype explained WBC variation better than age alone (rho = .43, p << 2 x 10(-6)). However, when the spline-adjusted WBC residuals were used as phenotype, no GWAS significant associations were found. Based on available annotation, the top 50 genetic variants suggested effects on signal transduction, translation initiation, cell development, and proliferation. Conclusion These results indicate that host genome variants do not strongly influence WBC across ALL subsets, and future studies of why some patients are more prone to hyperleukocytosis should be performed within specific ALL subsets that apply more complex analyses to capture potential germline variant interactions and impact on WBC.Peer reviewe

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Microarray-Based Genomic Profiling as a Diagnostic Tool in Acute Lymphoblastic Leukemia

    No full text
    In acute lymphoblastic leukemia (ALL) specific genomic abnormalities provide important clinical information. In most routine clinical diagnostic laboratories conventional karyotyping, in conjunction with targeted screens using e. g., fluorescence in situ hybridization (FISH), is currently considered as the gold standard to detect such aberrations. Conventional karyotyping, however, is limited in its resolution and yield, thus hampering the genetic diagnosis of ALL. We explored whether microarray-based genomic profiling would be feasible as an alternative strategy in a routine clinical diagnostic setting. To this end, we compared conventional karyotypes with microarray-deduced copy number aberration (CNA) karyotypes in 60 ALL cases. Microarray-based genomic profiling resulted in a CNA detection rate of 90%, whereas for conventional karyotyping this was 61%. In addition, many small (</p

    TRIM28 haploinsufficiency predisposes to Wilms tumor

    No full text
    Two percent of patients with Wilms tumors have a positive family history. In many of these cases the genetic cause remains unresolved. By applying germline exome sequencing in two families with two affected individuals with Wilms tumors, we identified truncating mutations in TRIM28. Subsequent mutational screening of germline and tumor DNA of 269 children affected by Wilms tumor was performed, and revealed seven additional individuals with germline truncating mutations, and one individual with a somatic truncating mutation in TRIM28. TRIM28 encodes a complex scaffold protein involved in many different processes, including gene silencing, DNA repair and maintenance of genomic integrity. Expression studies on mRNA and protein level showed reduction of TRIM28, confirming a loss-of-function effect of the mutations identified. The tumors showed an epithelial-type histology that stained negative for TRIM28 by immunohistochemistry. The tumors were bilateral in six patients, and 10/11 tumors are accompanied by perilobar nephrogenic rests. Exome sequencing on eight tumor DNA samples from six individuals showed loss-of-heterozygosity (LOH) of the TRIM28-locus by mitotic recombination in seven tumors, suggesting that TRIM28 functions as a tumor suppressor gene in Wilms tumor development. Additionally, the tumors showed very few mutations in known Wilms tumor driver genes, suggesting that loss of TRIM28 is the main driver of tumorigenesis. In conclusion, we identified heterozygous germline truncating mutations in TRIM28 in 11 children with mainly epithelial-type Wilms tumors, which become homozygous in tumor tissue. These data establish TRIM28 as a novel Wilms tumor predisposition gene, acting as a tumor suppressor gene by LOH

    High Yield of Pathogenic Germline Mutations Causative or Likely Causative of the Cancer Phenotype in Selected Children with Cancer

    No full text
    Purpose: In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer. Experimental Design: To identify mutations in known and novel cancer-predisposing genes, we performed trio-based whole-exome sequencing on germline DNA of 40 selected children and their parents. These children were diagnosed with cancer and had at least one of the following features: (1) intellectual disability and/or congenital anomalies, (2) multiple malignancies, (3) family history of cancer, or (4) an adult type of cancer. We first analyzed the sequence data for germline mutations in 146 known cancer-predisposing genes. If no causative mutation was found, the analysis was extended to Results: Four patients carried causative mutations in a known cancer-predisposing gene: TP53 and DICER1 (n ¼ 3). In another 4 patients, exome sequencing revealed mutations causing syndromes that might have contributed to the malignancy (EP300-based Rubinstein–Taybi syndrome, ARID1A-based Coffin–Siris syndrome, ACTB-based Baraitser–Winter syndrome, and EZH2-based Weaver syndrome). In addition, we identified two genes, KDM3B and TYK2, which are possibly involved in genetic cancer predisposition. Conclusions: In our selected cohort of patients, pathogenic germline mutations causative or likely causative of the cancer phenotype were found in 8 patients, and two possible novel cancer-predisposing genes were identified. Therewith, our study shows the added value of sequencing beyond a cancer gene panel in selected patients, to recognize childhood cancer predisposition

    High Yield of Pathogenic Germline Mutations Causative or Likely Causative of the Cancer Phenotype in Selected Children with Cancer

    Get PDF
    Purpose: In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer. Experimental Design: To identify mutations in known and novel cancer-predisposing genes, we performed trio-based whole-exome sequencing on germline DNA of 40 selected children and their parents. These children were diagnosed with cancer and had at least one of the following features: (1) intellectual disability and/or congenital anomalies, (2) multiple malignancies, (3) family history of cancer, or (4) an adult type of cancer. We first analyzed the sequence data for germline mutations in 146 known cancer-predisposing genes. If no causative mutation was found, the analysis was extended to Results: Four patients carried causative mutations in a known cancer-predisposing gene: TP53 and DICER1 (n ¼ 3). In another 4 patients, exome sequencing revealed mutations causing syndromes that might have contributed to the malignancy (EP300-based Rubinstein–Taybi syndrome, ARID1A-based Coffin–Siris syndrome, ACTB-based Baraitser–Winter syndrome, and EZH2-based Weaver syndrome). In addition, we identified two genes, KDM3B and TYK2, which are possibly involved in genetic cancer predisposition. Conclusions: In our selected cohort of patients, pathogenic germline mutations causative or likely causative of the cancer phenotype were found in 8 patients, and two possible novel cancer-predisposing genes were identified. Therewith, our study shows the added value of sequencing beyond a cancer gene panel in selected patients, to recognize childhood cancer predisposition
    corecore