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Abstract

Background:White blood cell count (WBC) as a measure of extramedullary leukemic

cell survival is a well-known prognostic factor in acute lymphoblastic leukemia (ALL),

but its biology, including impact of host genome variants, is poorly understood.

Methods:We included patients treated with the Nordic Society of Paediatric Haema-

tology and Oncology (NOPHO) ALL-2008 protocol (N = 2347, 72% were genotyped

Abbreviations: ALL, acute lymphoblastic leukemia; BCP-ALL, B-cell precursor ALL; COST, European Cooperation in Science and Technology; GWAS, genome-wide association study; LEGEND,

leukemia gene discovery by data sharing, mining, and collaboration; logWBC, natural log-transformedwhite blood cell count; MAF, minor allele frequency;MRD, minimal residual disease;MSigDB,

Molecular Signatures Databases; NOPHO, Nordic Society of Paediatric Haematology andOncology; OR, odds ratio; SNP, single-nucleotide polymorphism; T-ALL, T-cell ALL; VEP, Variant Effect

Predictor;WBC, white blood cell count.
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by Illumina Omni2.5exome-8-Bead chip) aged 1–45 years, diagnosed with B-cell pre-

cursor (BCP-) or T-cell ALL (T-ALL) to investigate the variation in WBC. Spline func-

tions of WBC were fitted correcting for association with age across ALL subgroups

of immunophenotypes and karyotypes. The residuals between splineWBC and actual

WBC were used to identify WBC-associated germline genetic variants in a genome-

wide association study (GWAS) while adjusting for age and ALL subtype associations.

Results: We observed an overall inverse correlation between age and WBC, which

was stronger for the selected patient subgroups of immunophenotype and karyotypes

(ρBCP-ALL=−.17, ρT-ALL=−.19; p< 3× 10−4). Spline functions fitted to age, immunophe-

notype, and karyotype explainedWBC variation better than age alone (ρ= .43, p<< 2

× 10−6). However, when the spline-adjusted WBC residuals were used as phenotype,

no GWAS significant associations were found. Based on available annotation, the top

50 genetic variants suggested effects on signal transduction, translation initiation, cell

development, and proliferation.

Conclusion:These results indicate that host genome variants do not strongly influence

WBC across ALL subsets, and future studies of why some patients are more prone to

hyperleukocytosis should be performed within specific ALL subsets that apply more

complex analyses to capture potential germline variant interactions and impact on

WBC.
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acute lymphoblastic leukemia (ALL), genome-wide association studies (GWAS), genotype, spline
functions, white blood cell count (WBC)

1 INTRODUCTION

Acute lymphoblastic leukemia (ALL) is the most common childhood

cancer and despite improvements of survival rates, it remains a major

cause of death among children with cancer.1 One of the historically

strongest risk factors for treatment failure is a high initial white blood

cell count (WBC) in peripheral blood at diagnosis, which for patients

with WBC above the normal range has been used as a measure of

tumor burden and extramedullary cell survival.2–4 Thewidely usedNCI

criteria define a WBC cutoff at 50 × 109/L for risk grouping, but as

it is challenged by the lack of a clear distribution mode/antimode at

this dichotomous discriminator, many groups have replaced or com-

plemented it with cytogenetics and minimal residual disease (MRD)

during the first months of therapy.2,5,6 A higher WBC is seen in chil-

dren compared to adults, and an almost 10-fold higher median WBC

is seen in patients with T-cell ALL (T-ALL) compared to B-cell precur-

sor ALL (BCP-ALL). However, patients can have aWBCwithin the nor-

mal range and still have a high percentage of leukemic blasts in the

bone marrow.3,5 A highWBC reflects the leukemic cells’ ability to sur-

vive outside the thymus and bone marrow, but it is unknown to which

extent this reflects host genomic or acquired features of the leukemic

cells. Patients with favorable cytogenetics like high hyperdiploidy (>50

chromosomes) or translocation t(12;21) typically have lower WBC,

whereas the poorer prognosis MLL-rearranged patients will present

with higher WBC.3,7,8 Thus, using a crude WBC cutoff for risk stratifi-

cation rather than one adjusted by host features of age, immunophe-

notype, and cytogenetics that have been previously associated with

WBC levels may both under- and overestimate the potential impact of

the tumor burden.3,7,8 The benefit of more differentiated risk classi-

fier models has recently been published for relapse prediction in child-

hood ALL but could potentially be improved by a better classification

ofWBC.6

Genome-wide association studies (GWAS) are applied to identify

andquantify the strength of common single-nucleotide polymorphisms

(SNPs) associating with the phenotype.9–11 Normal WBC has previ-

ously been studied with GWAS, where people with abnormal WBC

levels are excluded, showing germline variants influencing WBC and

leukocyte subsets.12–14

We modeled the interactions of WBC risk factors across key child-

hood ALL subgroups to identify the underlying host genome variants

influencingWBC at diagnosis of ALL.

2 METHODS

2.1 Study population and clinical data

The study cohort includes patients diagnosed with BCP-ALL or T-ALL.

The Philadelphia chromosome-negative patients, aged 1–45 years,

were diagnosed between July 2008 and February 2019. We included
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patients without Down syndrome or other known leukemia predis-

posing syndromes. Patients were treated with the Nordic Society of

Paediatric Haematology and Oncology (NOPHO) ALL-2008 protocol

in the Nordic and Baltic countries (Denmark, Sweden, Norway, Fin-

land, Iceland, Estonia, and Lithuania). A written consent was obtained

for inclusion in GWAS. In the NOPHO ALL-2008 protocol, WBC at

the time of diagnosis was used for initial treatment stratification for

the induction therapy as a dichotomized parameter, where patients

with BCP-ALL andWBC<100 × 109/L were assigned to the non-high-

risk group, whereas patients with T-ALL and/or WBC ≥100 × 109/L

were assigned to the high-risk group.15 We used a natural logarithm to

transform the WBC (logWBC) to obtain normally distributed data for

modeling.

The NOPHO registry contains data of anthropometrics, diagno-

sis, and treatment on patients treated with the NOPHO ALL-2008

protocol.15 The clinical information included age at diagnosis, sex,

country, height, weight, karyotype, immunophenotype, DNA index, and

WBC at diagnosis, as well as treatment-related information on MRD

(see Supporting Methods) and risk stratification (standard [SR], inter-

mediate [IR], or high risk [HR]) at treatment day15andendof induction

therapy (EOI; day 29).

Clinical variables (Figure S2) with amaximumof 15%missing values

were accepted before imputation using factor analysis for mixed data

with the “missMDA” package in R v3.6.1.16,17 MRD and information on

risk stratification were not imputed, as this was used to correlate with

WBC asmeasures of treatment outcome.

2.2 Genotype data

Postremission DNA was collected from a total of 2050 patients, and

written add-on consent was obtained for participation in genetic

studies. The samples were genotyped in four batches using three

versions of the Illumina Infinium Omni2.5exome-8-BeadChip arrays

with 2,546,527–2,617,655 SNPs available per version.18–20 A detailed

description of the genotype data preprocessing is included in Support-

ing Information in SupplementaryMethods.

2.3 Spline functions to model WBC variation
across ages and ALL subtypes

Hypothesizing that specific host genome variant will have the same

proportional impact on WBC across key ALL subsets, third-degree

spline functions were constructed to approximate a model of WBC

distribution, given the variation of WBC by age, immunophenotype,

and selected cytogenetics. Spline functions are piece-wise polynomi-

als consisting of multiple polynomials separated by a set of limits on

the axis of the independent variable, known as “knots,” which create

smaller windows for each polynomium.21,22 We applied third-degree

splines, meaning that third-degree polynomials are applied to fit the

dependent variable logWBC between a set of knots to approximate

complex distributions via a smooth curve. Spline functions were fitted

to model logWBC as a function of age with three knots placed at 4, 7,

and 25 years of age, where the first knot corresponded to a previously

known incidence peak of ALL and the secondwas placed to be near the

end of the decrease in the incidence peak.7,8,23 We fitted spline func-

tions to the patients with BCP- and T-ALL, separately, as these have

different distributions of WBC. Furthermore, several cytogenetic sub-

setsof patientsdiagnosedwithBCP-ALLhavedifferent levels ofWBC,3

where we adjusted the already fitted spline function by the difference

in median logWBC of all the patients with BCP-ALL and median log-

WBC in the selected subgroups. The selected subgroupswereBCP-ALL

with t(1;19) (E2A/PBX1 gene fusion) and t(12;21) (ETV6/RUNX1 gene

fusion) as well high hyperdiploidy (>50 chromosomes),MLL rearrange-

ments, and the remaining BCP-ALL patients with none of the above

(noted as “BCP-ALL other”), which were pooled as number of patients

N< 50.24 The spline residuals illustrate the individual variation of each

patient separately from the variation attributed to known influences

on WBC in ALL by its associations with age, immunophenotype, and

cytogenetics. The spline residuals are defined as

Δ = log WBCspline − log WBCtrue

The spline functions were fitted using Python v3.6.10 and the

LSQUnivariateSpline function from the Python package scipy.

interpolate v1.5.4.

2.4 Statistical analysis and genome-wide
association studies

Statistical testing of distributions and correlations were made in R

v3.6.116 and Python v3.6.10 with the package scipy v1.5.4. The influ-

ence of data coming from different centers/countries and logWBC

across the selected subgroups was inspected using ANOVA test. Cor-

relations were tested with Spearman rank correlation coefficient (ρ),
where p < .05 was considered significant. To investigate the patterns

of WBC in children and adults, we compared the correlations of age

versus logWBC and logWBC versus splines in groups of children and

adults by thresholds at ages 15, 18, and 21. The thresholds are chosen

to replicate from previous studies by Vaitkevičienė et al. (2013), Toft

et al. (2013 and 2018), and Hu et al. (2020).2,3,25,26

PLINK2/1.90beta320 was used to perform GWAS with linear

regression. Genotypes were assumed to have an additive effect on

logWBC with respect to the number of minor alleles. A Bonferroni-

corrected genome-wide significance of p < 5 × 10−8 was applied to

investigate if significant associations could be detected, but we also

manually assessed the results for interesting structures usingManhat-

tan plots created with the qqman package in R v3.6.1.16,27

Top associated variants were annotated using the online version of

Variant Effect Predictor (VEP)28 from Ensembl GRCh37 release 103

with variants included within 10 kb upstream/downstream of gene

boundaries. Gene annotations from VEP were further inspected with

GeneCards29 v5.1. Genotype-Tissue Expression (GTEx) Portal V830,31

was used to check if any of the top variants were significantly asso-

ciated with expression in any tissue. RegulomeDB v2.032,33 was used

to inspect intergenic/intronic variants for known functional impact.
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F IGURE 1 Overview of Nordic Society of Paediatric Haematology andOncology (NOPHO) ALL-2008 cohort. (A) Flowchart describing the
patient filtering for inclusion in this study. (B) Distribution of white blood cell count (WBC)measured from peripheral blood at acute lymphoblastic
leukemia (ALL) diagnosis. (C) Distribution ofWBC after natural logarithm transformation. (D) Distribution of age at ALL diagnosis. (E) Percentage
distribution of selected ALL subgroups with clinical data (N= 2347) and genetic data (N= 1698)

We performed a gene set overlap analysis of the top gene annota-

tions using the Molecular Signatures Databases (MSigDB) v7.4 and

accompanying online tools.34–36 The query gene set was constructed

from the genes annotated to the top 50 SNPs in GWAS. We computed

theoverlap to the collections of gene sets frompathwaydatabases “CP:

KEGG”37 and “CP: Reactome,”38 as well as “C7: immunologic signature

gene sets”39 inMSigDB.

3 RESULTS

3.1 Characteristics of NOPHO ALL-2008 study
cohort

The study included a total of 2347 patients after preprocessing and fil-

tering (90% of diagnosed patients with consent; Figure 1A). MRD was

measured at treatment days 15 and 29,whereN=2235/2347patients

(95.3% complete) were available for the study, though this differed

for the individual days with Nday15= 2139 (91.1%) and Nday29= 2164

(92.2%) patients (Figure S3).

As the overall distribution was highly right skewed toward a lower

WBC, we used a natural logarithm transformation to get more nor-

mally distributed data (Figure 1B,C). Age at diagnosis was right

skewed toward a lower age with an incidence peak around 2–5 years

(Figure 1D). The immunophenotypes were distributed as 85% patients

with BCP-ALL and 15% with T-ALL (Figure 1E). We selected the fol-

lowing subtypes for further investigation: T-ALL and BCP-ALL with

translocation t(1;19) or t(12;21), high hyperdiploidy, MLL rearrange-

ment, as well as a subset termed “BCP-ALL other” (see groups in

Figure 1E). The subsets we chose for correction with the spline func-

tionswere the largest in our cohort (N= [63; 611]; Table 1). “Extra cyto-

genetics” from Table 1 is a subset of “B-ALL other” and includes the

smaller subgroups of ALL (N = [7; 46]) that were not included for the

correction as separate groups, such as dicentric chromosome dic(9;20)

or intrachromosomal amplification of chromosome 21 (iAMP21). The

largest subgroups included were BCP-ALL with t(12;21) (N = 428),

BCP-ALL hyperdiploidy (N = 611), and BCP-ALL other (N = 825), with

the first two being the largest ALL subtypes.40

ThemedianWBCwas9.0×109/L and79.5×109/L for patientswith

BCP-ALLandT-ALL, respectively (Table1). logWBCalsodiffered signif-

icantly by karyotype (p< 3× 10−4), with themain differences between

those with anMLL rearrangement and the remaining BCP-ALL groups

(Figure S4). A small inverse correlation between age and logWBC was

observed across the full cohort (ρ = −.06, p = 2.45 × 10−3), which was
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TABLE 1 Age andWBC at diagnosis of ALL for included patients

Number of

patients Age (years) WBC (×109/L)

Spearman correlation

between age and logWBC

All patients 2347 (72%) 5.72 (3.16 to 13.57, 1.01 to 44.94) 11.80 (4.6 to 46, .4 to 1161) ρ=−.06, p= 2.45× 10−3

Sex:

Male 1345 (73%) 6.13 (3.27 to 14.76, 1.05 to 44.94) 12.30 (4.7 to 50.2, .4 to 1103) ρ=−.004, p= .89

Female 1002 (71%) 5.27 (3 to 11.35, 1.01 to 44.94) 10.55 (4.4 to 42.6, .4 to 1161) ρ=−.15, p= 1.28× 10−6

Immunophenotype:

BCP-ALL 1993 (73%) 5.09 (3 to 11.71, 1.01 to 44.94) 9 (4.2 to 31.6, .4 to 1161) ρ=−.17, p= 7.58× 10−15

T-ALL 354 (67%) 11.18 (6.14 to 20.03, 1.2 to 43.99) 79.45 (23.65 to 209.78, .6 to 1103) ρ=−.19, p= 2.46× 10−4

BCP-ALL subgroups:

t(1;19) [E2A/PBX1] 63 (70%) 6.69 (3.41 to 13.08, 1.3 to 43.99) 18.4 (9.45 to 50.25, 1.4 to 306) ρ=−.44, p= 2.68× 10−4

t(12;21) [ETV6/RUNX1] 428 (82%) 3.94 (2.9 to 5.82, 1.22 to 20.08) 10.55 (5.28 to 32.65, .5 to 555) ρ=−.27, p= 1.62× 10−8

High hyperdiploidy 611 (77%) 4.12 (2.81 to 6.67, 1.1 to 44.6) 6.5 (3.5 to 17.9, .5 to 330) ρ=−.30, p= 3.52× 10−14

MLL rearrangement 66 (68%) 10.48 (2.01 to 25.64, 1.01 to

42.22)

99.5 (28.2 to 296.1, 2 to 1161) ρ= .22, p= .07

BCP-ALL other 825 (67%) 9.33 (3.84 to 17.78, 1.05 to 44.94) 9.5 (4 to 36, .4 to 524) ρ=−.19, p= 5.57× 10−8

Extra cytogenetics:

Hypodiploid (44 chr) 7 (71%) 2.81 (2.25 to 7.52, 1.65 to 25.87) 18.6 (7.25 to 128.65, 2 to 186) ρ=−.75, p= .05

Hypodiploid (<44 chr) 27 (52%) 13.45 (5.69 to 20.43, 2.16 to

44.78)

6.7 (3.2 to 24.9, 1.1 to 119) ρ=−.16, p= .44

dic(9;20) 38 (66%) 2.32 (1.74 to 4.79, 1.05 to 30.3) 45.9 (12.63 to 117.55, 1 to 374.1) ρ=−.27, p= .10

iAMP21 46 (83%) 10.22 (7.53 to 14.39, 3.32 to

44.03)

8.05 (2.63 to 17.58, .6 to 218) ρ=−.19, p= .21

CNS3 status (≥5 blast

in cerebral spinal

fluid)

93 (80%) 7.29 (3.16 to 13.05, 1.01 to 43.95) 44.1 (9 to 141, 1 to 1161) ρ= .07, p= .53

Note: In parenthesis is the percentage patients for whom genetics was also available. The age and WBC columns are the median values per group with IQR

and actual range (IQR, range). IQR is given as range first to third quantiles. The selected subsets of immunophenotype and cytogenetics used for correction in

subsequent analysis are “T-ALL” and “Subgroups of BCP-ALL.” Groups with significant correlation between age andWBC are in italic.

Abbreviations: ALL, acute lymphoblastic leukemia; BCP-ALL, B-cell precursor ALL; IQR, interquartile range; T-ALL, T-cell ALL;WBC, white blood cell count.

stronger for the immunophenotypes (ρBCP-ALL= −.17, pBCP-ALL= 7.58

× 10−15; ρT-ALL= −.19, pT-ALL= 2.46 × 10−4). For the subgroups inves-

tigated further, significant inverse correlations between age andWBC

were found ranging ρ = (−.44; −.19) (Table 1). Only the subgroup of

BCP-ALL withMLL rearrangement had a nonsignificant positive corre-

lation between age andWBC (ρ= .22, p= .07).

3.2 Spline functions of logWBC across ages and
ALL subtypes

Wefitted two spline functions in this study: one for patientswith T-ALL

and one for BCP-ALL. These were fitted with preselected knots placed

at ages of 4, 7, and 25 years, as seen to approximately fit with the dis-

tribution of age at diagnosis seen in our data (Figure 1D).

A trend of higher logWBC at a lower age, given logWBC as a func-

tion of age, is seen in Figure 2 and Table 2. For most subgroups, the

splines approximately fit the trend of logWBC across ages, which is

supported by a significant correlation between logWBC and the log-

WBCvalues estimatedby the spline functions in the full cohort (ρ= .43,

p << 2 × 10−16). Furthermore, the selected subsets of BCP-ALL with

either high hyperdiploidy, translocations t(1;19) or t(12;21) showed

distinct median logWBC levels, but similar logWBC–age trend, where

we moved the fitted spline function (blue) to adjust for the varia-

tion between the ALL subgroups (orange). At the subgroup levels, the

splines could, to some degree, capture the variation with significant

correlations between logWBC and splines ranging ρ= [.11; .46], where

only the group of BCP-ALL withMLL rearrangement did not correlate.

The correlations for ALL subgroups between splines and logWBCwere

similar compared to the subgroupcorrelations for ageand logWBC,but

at the cohort level allowed for a better capture of the complexity in the

overall cohort (ρ = −.06 for age and logWBC in Table 1, vs. ρ = .43 for

logWBC and splines in Table 2).

We investigated the correlations of age and WBC from previous

studies andcompared these toour studyand spline adjustments to sep-

arately assess the patterns in children and adult cohorts. Vaitkevičienė

et al. (2013)3 studied N = 2638 patients with ALL aged 1–14.9 years

and treated with the NOPHO ALL-92 and -2000 protocols, where
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F IGURE 2 Spline functions with adjustment for subgroupmedian white blood cell count (WBC). The blue lines are the fitted spline functions.
Gray dots are the patients’ true values of age against natural log-transformedWBC (logWBC), while the orange dots are the true age against
median-corrected spline values for logWBC

TABLE 2 Characteristics of spline functions and their correlations to logWBC

Number of patients,

n (%)
Spearman correlation between

logWBC and splines

Spline residuals

(IQR, range)

All patients 2347 (100%) ρ= .43, p= 1.12× 10−105 .19 (−.94 to 1,−3.89 to 4.75)

BCP-ALL 1993 (84.9%) ρ= .29, p= 1.84× 10−40 .25 (−.87 to 1,−3.89 to 4.09)

T-ALL 354 (15.1%) ρ= .23, p= 7.47× 10−6 −.18 (−1.16 to .93,−2.98 to 4.75)

BCP-ALL with t(1;19) 63 (2.7%) ρ= .46, p= 1.75× 10− .28 (−.59 to .87,−2.49 to 2.7)

BCP-ALL with t(12;21) 428 (18.2%) ρ= .23, p= 1.95× 10−6 .31 (−.9 to 1,−3.88 to 3.12)

BCP-ALL with hyperdiploidy 611 (26%) ρ= .21, p= 2.51× 10−7 .31 (−.68 to .89,−3.32 to 2.69)

BCP-ALL withMLL
rearrangement

66 (2.8%) ρ=−.02, p= .9 .6 (−.86 to 1.69,−1.93 to 4.09)

BCP-ALL other 825 (35.2%) ρ= .11, p= 1.17× 10−3 .19 (−1.1 to 1.1,−3.89 to 3.55)

Note: Groups in italic are the selected subgroups that are used for correctionwith spline functions.
Abbreviations: ALL, acute lymphoblastic leukemia; BCP-ALL, B-cell precursor ALL; IQR, interquartile range; T-ALL, T-cell ALL;WBC, white blood cell count.

significant inverse correlations were found between age and WBC in

some subsets of BCP-ALL (ρ = [−.28; −.09], p < .05). We reported

similar correlations in our full cohort aged 1–45 years (Table 1). The

inverse correlation in patients with T-ALL (NT-ALL= 267, ρT-ALL= −.06,

pT-ALL= .33) was not significant as opposed to this study (ρT-ALL=−.19,
pT-ALL= 2.46 × 10−4; Table 1). In our cohort, a significant correlation

betweenage and logWBCwas also found in this range for children aged

1–15 years, whereas the corresponding population aged 15–45 years

showed no correlation (Table 3).

In Toft et al. (2013),2 a smaller set of patients (NBCP-ALL= 624,

NT-ALL= 125) from the NOPHO ALL-2008 protocol is studied, and

significant inverse correlations between age and WBC are reported
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TABLE 3 Spearman correlations (ρ) of age-stratified groups from the NOPHOALL-2008 study cohort (N= 2347)

Age group (years)

Number of

patients

Spearman correlation of

age and logWBC

Spearman correlation of

logWBC and splines

1–15 1841 (78.44%) ρ=−.08, p= 1.14× 10−3 ρ= .42, p= 2.49× 10−78

15–45 506 (21.56%) ρ= 0, p= .96 ρ= .45, p= 4.75× 10−27

1–18 1983 (84.49%) ρ=−.08, p= 4.30× 10−4 ρ= .41, p= 1.18× 10−80

18–45 364 (15.51%) ρ=−.02, p= .77 ρ= .52, p= 4.11× 10−27

1–21 2069 (88.16%) ρ=−.08, p= 2.49× 10−4 ρ= .41, p= 2.80× 10−83

21–45 278 (11.84%) ρ=−.10, p= .10 ρ= .58, p= 4.57× 10−26

Abbreviations: ALL, acute lymphoblastic leukemia; NOPHO, Nordic Society of Paediatric Haematology andOncology;WBC, white blood cell count.

for the immunophenotypes (ρBCP-ALL= −.2, ρT-ALL= −.3; p < .0001).

A second study by Toft et al. (2018)25 reported with more power

(NBCP-ALL= 1278, NT-ALL= 231) that the inverse correlations still hold

in similar magnitude (ρBCP-ALL= −.17, ρT-ALL= −.28; p < .001). These

are close to what we found in this study for the larger NOPHO

ALL-2008 cohort (NBCP-ALL= 1993 and NT-ALL= 354, ρBCP-ALL= −.17,

ρT-ALL=−.19; p< 3 × 10−4; Table 1). Considering only the children and

young adults in the population aged 1–18 years, a significant inverse

correlation is found, but not for the corresponding adult population

aged 18–45 (Table 3).

As for the adult population, a previous study by Hu et al. (2020)26

described significant associations between age and WBC in a healthy

Chinese cohort (N = 74,402) aged 21–45 years; however, in our opin-

ion, the association was limited, reflected by β = [.01; .012] in a linear

regression. For the age group 21–45 years in our (European) cohort,

we have less power with N = 278 patients available and found a small

insignificant inverse correlation between age and logWBC (ρ = −.1,

p= .1; Table 3).

The corresponding age-stratified significant correlations between

logWBCand splineswere similar for children and adults, which empha-

sizes the fact thatwehaveused age in the adjustment ofWBCvariation

(Table 3).

The residuals between the actual and spline-predicted logWBC

were estimated and used as a phenotype in GWAS. It was seen that

most subgroups had positive residuals, except for patients with T-ALL

(Table 2),which correspondswith the generally higherWBC levels seen

in this subgroup. We associated the MRD status and values when pos-

itive (Figure S3) to the different representations of WBC in the form

of logWBC and spline residuals (Table S1). TheMRD status was signifi-

cant for bothWBC representations in the overall cohort at both day 15

and EOI. Yet, in the selected subgroups, only the MRD status at both

days for BCP-ALL other and that at EOI for BCP-ALL with MLL rear-

rangement were significantly associated with both WBC representa-

tions. The significant associations were of similar effect size, though

opposite directions between logWBC and spline residuals (odds ratio

[OR] >1 and OR <1, respectively). Using the residuals enabled a rep-

resentation ofWBC variation accounting for some of the influences of

age, immunophenotype, and selected karyotypes, whereby the GWAS

focuses ononly the unaccounted variance in its linear estimation of sin-

gle genetic associations.

3.3 Genome-wide association studies

A total of 2,146,366 variants and 1698 patients passed the genotype

quality control and were included in our study cohort (72% of patients

with clinical information; Figure 1 and Table 1). We conducted two

GWAS using linear regressionwith the phenotypes logWBC and spline

residuals of logWBC. The top 50 GWAS results from both phenotypes

were annotated to closest genes and investigated with Gene Cards,

GTEx, RegulomeDB, and gene overlap analysis.

3.3.1 Genome-wide associations of logWBC

The first GWAS was conducted with logWBC as phenotype, because

the linear regression model applied works under the assumption

that the data are normally distributed. The GWAS did not show any

genome-wide significant associations to logWBC. From the quantile–

quantile (QQ) plot, the p-values observed were higher than expected

with the deflation beginning before −log10(p) = 3 (genomic inflation

factor λ= .97; Figure S5). Annotation of the top 50 associated variants

found genes involved in signal transduction for cell development regu-

lation, T helper cells, and neuronal differentiation (e.g., CD81, CDH13,

PTPRB, STAT4, and TM4SF5; File S2).

3.3.2 Genome-wide associations of logWBC spline
residuals

The second GWAS was conducted with the before-mentioned spline

residuals as the phenotype (Figure 2 and Table 2) and adjusted for the

known influences of age, immunophenotype, and karyotype on log-

WBC (Figure S6). The most significant observed p-value was p = 2.34

× 10−6 for a rare SNP (rs144078525, G>A, minor allele frequency

[MAF]NOPHO= 5.9 × 10−3, MAFEUR= 2 × 10−3; File S3) found in two

heterozygous patients (one patient has T-ALL, the other has BCP-ALL

with MLL rearrangement). There appeared to be a deflation in the p-

values from the analysis, when inspecting theQQplot of p-values from

the GWAS, which was less deflation than seen in the previous GWAS

(genomic inflation factor λ = .99; Figure S6). Annotation of the top 50
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associated variants revealed genes involved in signal transduction and

translation initiation, possibly in regulation of cell development, differ-

entiation, and proliferation (e.g., EIF6, ELK4, FAM83C, MYBBP1A, and

TSPAN9; File S3).

FromGTEx, it was found that 12/50 SNPs were significantly associ-

ated with an altered expression in GTEx tissues. Of these, two SNPs on

chromosome 20were found significantly expressed in thewhole blood

(rs2425046 and rs6579227; File 3), which also presented with similar

effect sizes in the GWAS (β = −.37 and β = −.35, respectively). With

RegulomeDB, it was found that 17/50 SNPs had a probability larger

than .5 of being a regulatory variant, whereof seven of 17 SNPs scored

probabilities above .75 (rs2425046 and rs6579227 were also found

here; File S3).

Our gene set overlap analysis with MSigDB from the top anno-

tations found three significant gene set overlaps, of which one with

five of 28 gene annotations was still significant after FDR correction

at α = .05 significance level (p = 2.44 × 10−7, FDR q = 1.71 ×

10−3). The significant gene set was “GSE39820_CTRL_

VS_TGFBETA3_IL6_IL23A_CD4_TCELL_DN”41,42 from the collection

“C7: immunologic signature gene sets”39 including genes downreg-

ulated in CD4 T cells treated with TGF-β3, IL-6, and IL-32a. The

significant overlap was the genes C3, EDEM2, GPR108, HERPUD1, and

TRIP10, which annotated to three SNPs (rs201148371, rs2425046,

and rs9938160; File S3) for which the genotypes distributed fairly

equally acrossWBC in the ALL subgroups.

The two SNPs, rs6544982 and rs17146259, were found in the top

50 GWAS hits from both phenotypes (Files S2 and S3), which anno-

tated to gene BCYRN1 and intergenic region, respectively. The SNPs

were found at similar ranking and p-values in the top of both GWAS,

as well as similar effect sizes, thoughwith opposite directions.

4 DISCUSSION

The WBC pattern captured is age related as expected from associ-

ations to age found in previous studies of healthy cohorts and ALL

patients, where also association between WBC with immunopheno-

type and cytogenetics is seen.2,3,43–48 We assessed correlations by

Spearman correlation coefficients (ρ) and considered the linear cor-

relation of age and logWBC to be somewhat limited. This is both for

pediatric (e.g., age 1–15 years: ρ = −.08, p = 1.14 × 10−3; Table 3)

and for adults (age 15–45 years: ρ = 0, p = .96; Table 3). However,

we see a much more significant correlation between logWBC and

our fitted splines for both children (age 1–15: ρ = .42, p = 2.49 ×

10−78) and adults (age 15–45: ρ = .45, p = 4.75 × 10−27). The corre-

lations for both groups are very similar, highlighting the effectiveness

of the spline function to capture the variation in age and cytogenetics

(Tables 1 and 2).

As ALL is a very heterogeneous disease with many molecular sub-

types and new ones are continuously being described, the importance

of adjusting the clinical features by subtype is emphasized in this

study,7,49–51 which resembles what has recently been described for

MRD.6 Of note, some subsets, such as hypodiploidy and iAMP21, were

not adjusted for due to the low frequency, and someof these are known

to present with relatively high WBC (Table 1).7 Furthermore, these

were potentially present across our defined subgroups and thus influ-

enced WBC in combination with these, or with other variations not

accounted for in protocols.40

Our GWAS used a linear regression to fit and investigate the sig-

nals of SNPs on the target phenotype, measuring the variant effect on

the phenotype with each addition of a minor allele. Using the spline

residuals as phenotype in the GWAS makes the model try to account

for variation of age, immunophenotype, and selected karyotypes. The

spline functions are fitted with logWBC and the residuals thus inter-

preted on this scale as well. We see the residuals as still quite large

across subgroups (Table 2), and from the QQ plot of the spline resid-

uals GWAS (Figure S6), we see that little deflation of the p-values is still

present. This may be due to the interpretation of the log-scaled pheno-

type applied to a linear model. However, the linear regression used in

GWAS required thatwe used the log scale to satisfy themodel assump-

tion of normal distribution.

We found no genome-wide significant SNPs, but gene annotations

of the top 50 associated SNPs suggested some effects on cell prolifer-

ation and differentiation, some of which also having been implicated

in different cancers.29,52–58 The top SNP rs144078525 (β = 4.341

± .92, p = 2.34 × 10−6, MAFNOPHO< .01) reflects a missense vari-

ant in the second exon of HOXC12, which is part of the HOXC gene

locus that contains a family of transcription factors expressed dur-

ing embryo development and in lymphoid cell hematopoiesis,59,60 and

has been implicated in acute leukemias.59,61 rs144078525 is also

near the HOXC13 gene.28,29,57,59,62 Brotto et al. (2020)57 associated

HOXC12 and HOXC13 with cancer hallmarks for “Genome instabil-

ity and DNA repair pathways” and “Tumor-promoting inflammation,”

respectively, in a pathway enrichment analysis.HOXC12 expression has

also been reported as significantly increased in breast tumor samples

compared to normal by Luo et al. (2019).62 HOXC13 has been pre-

viously reported as fusion partner for NUP98 in patients with acute

myeloid leukemia.59,63 rs144078525 is also close to (5912bp–7689bp

downstream) HOTAIR, which is a long noncoding RNA that regulates

expression of the HOXD genes.64 HOTAIR has been implicated in mul-

tiple cancers, including breast and colorectal, where it induces metas-

tasis through the regulation ofHOXD.64

rs6579227 (β = −.30 ± .07, p = 6.24 × 10−6, MAFNOPHO= .13) is

6418 bp–6880 bp upstream of EIF6, and rs2425046 (β = −.28 ± .07,

p = 2.28 × 10−5, MAFNOPHO= .13) is an intronic variant in EIF6. EIF6

encodes eukaryotic translation initiation factor 6, which is involved in

the formation of the ribosomal 60S subunit and in translation initiation

by prohibiting its joining with the 40S ribosome subunit to form the

80S active ribosome without the presence of mRNA.55 EIF6 has been

reported overexpressed inmultiple cancers, including colorectal, acute

promyelocytic leukemia, and lung cancer metastasis.58

rs187168222 (β = 1.63 ± .39, p = 3.59 × 10−5, MAFNOPHO< .01) is

a missense variant of MYBBP1A, which encodes MYB binding protein

1A that is involved in regulation of different transcription factors sug-

gested to act as a tumor suppressor in a wide range of cellular process,

including cell division, proliferation, and apoptosis.56
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rs79050656 (β = .38 ± .09, p = 1.24 × 10−5, MAFNOPHO= .07)

and rs12370932 (β = .24 ± .06, p = 3.64 × 10−5, MAFNOPHO= .18)

are intronic variants of TSPAN9, which encodes cell surface protein

tetraspanin 9.29 Tetraspanin 9 belongs to a family of transmembrane

proteins that mediates signal transduction in processes such as cell

adhesion and invasion. Tetraspanin 9 has been reported in gastric can-

cer to inhibit the growth and invasion of tumor cells via the ERK1/2 sig-

naling pathway.29,65

The variation of WBC at diagnosis of ALL is very diverse and shows

indications of complex underlying feature interactions. Based on our

models, it seems that the primary driver ofWBC at diagnosis is the dis-

ease subtype of ALL, with single germline variants playing a very lim-

ited role. Still, the input data complexity or a combination thereof used

in this study may be inadequate to explain the WBC variation. Conse-

quently, a need remains for studies applying more complex models, on

larger cohorts, and machine learning methods to provide opportuni-

ties to capture nonlinear biological interactions the potential is under-

lying WBC at diagnosis.66,67 The study of genetic signals in biological

complex phenotypeswould benefit fromutilizing the strengths offered

by the machine learning methodologies both for discovery and prior-

itization of variants, as well as allowing for explorations of individual

patient’s risk factors determining theirWBC.68–70
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