597 research outputs found

    Structure, Scaling and Phase Transition in the Optimal Transport Network

    Full text link
    We minimize the dissipation rate of an electrical network under a global constraint on the sum of powers of the conductances. We construct the explicit scaling relation between currents and conductances, and show equivalence to a a previous model [J. R. Banavar {\it et al} Phys. Rev. Lett. {\bf 84}, 004745 (2000)] optimizing a power-law cost function in an abstract network. We show the currents derive from a potential, and the scaling of the conductances depends only locally on the currents. A numerical study reveals that the transition in the topology of the optimal network corresponds to a discontinuity in the slope of the power dissipation.Comment: 4 pages, 3 figure

    DIMENSIONALITY BASED SCALE SELECTION IN 3D LIDAR POINT CLOUDS

    Get PDF
    International audienceThis papers presents a multi-scale method that computes robust geometric features on lidar point clouds in order to retrieve the optimal neighborhood size for each point. Three dimensionality features are calculated on spherical neighborhoods at various radius sizes. Based on combinations of the eigenvalues of the local structure tensor, they describe the shape of the neighborhood, indicating whether the local geometry is more linear (1D), planar (2D) or volumetric (3D). Two radius-selection criteria have been tested and compared for finding automatically the optimal neighborhood radius for each point. Besides, such procedure allows a dimensionality labelling, giving significant hints for classification and segmentation purposes. The method is successfully applied to 3D point clouds from airborne, terrestrial, and mobile mapping systems since no a priori knowledge on the distribution of the 3D points is required. Extracted dimensionality features and labellings are then favorably compared to those computed from constant size neighborhoods

    Observations of the urban boundary layer in a cold climate city

    Get PDF
    Cold environment supports a large diversity of local climates. Among them, urban climates in northern cities stand out for their pronounced warm temperature anomaly known as the Urban Heat Island (UHI). UHI in northern cities has been already studies through satellite images and in-situ observations in the urban canopy layer (UCL). Yet, the vertical structure of the urban atmospheric boundary layer (UBL) has not been studied there. This work presents new observations of UBL in Nadym – a sub-Arctic Siberian city. During several intensive observing periods we run simultaneous registration of urban and rural meteorological parameters with unmanned drones, a microwave temperature profiler and a dense network of ground-based sensors. The data analysis reveals details of UHI development in the UCL and UBL, and links together horizontal urban-rural canopy-layer temperature differences, boundary layer stability, and UHI vertical extent. We show that during strong temperature inversions, UBL is less stratified than its rural counterpart, but it still remains very thin and limited in height by a few tens of meters. The observations disclose that the ground-based (50 m – 100 m above ground) temperature inversion is one of the strongest control factors for UHI in cold climate conditions in winter

    Structuring of turbulence and its impact on basic features of Ekman boundary layers

    Get PDF
    The turbulent Ekman boundary layer (EBL) has been studied in a large number of theoretical, laboratory and modeling works since F. Nansen's observations during the Norwegian Polar Expedition 1893–1896. Nevertheless, the proposed analytical models, analysis of the EBL instabilities, and turbulence-resolving numerical simulations are not fully consistent. In particular, the role of turbulence self-organization into longitudinal roll vortices in the EBL and its dependence on the meridional component of the Coriolis force remain unclear. A new set of large-eddy simulations (LES) are presented in this study. LES were performed for eight different latitudes (from 1° N to 90° N) in the domain spanning 144 km in the meridional direction. Geostrophic winds from the west and from the east were used to drive the development of EBL turbulence. The emergence and growth of longitudinal rolls in the EBL was simulated. The simulated rolls are in good agreement with EBL stability analysis given in Dubos et al. (2008). The destruction of rolls in the westerly flow at low latitude was observed in simulations, which agrees well with the action of secondary instability on the rolls in the EBL. This study quantifies the effect of the meridional component of the Coriolis force and the effect of rolls in the EBL on the internal EBL parameters such as friction velocity, cross-isobaric angle, parameters of the EBL depth and resistance laws. A large impact of the roll development or destruction is found. The depth of the EBL in the westerly flow is about five times less than it is in the easterly flow at low latitudes. The EBL parameters, which depend on the depth, also exhibit large difference in these two types of the EBL. Thus, this study supports the need to include the horizontal component of the Coriolis force into theoretical constructions and parameterizations of the boundary layer in models

    Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city

    Get PDF
    The Arctic has rapidly urbanized in recent decades with 2 million people currently living in more than a hundred cities north of 65∘&thinsp;N. These cities have a harsh but sensitive climate and warming here is the principle driver of destructive thawing, water leakages, air pollution and other detrimental environmental impacts. This study reports on the urban temperature anomaly in a typical Arctic city. This persistent warm anomaly reaches up to 11&thinsp;K in winter with the wintertime mean urban temperature being 1.9&thinsp;K higher on average in the city center than in the surrounding natural landscape. An urban temperature anomaly, also known as an urban heat island (UHI), was found using remote sensing and in situ temperature data. High-resolution (1&thinsp;km) model experiments run with and without an urban surface parameterization helped to identify the leading physical and geographical factors supporting a strong temperature anomaly in a cold climate. The statistical analysis and modeling suggest that at least 50&thinsp;% of this warm anomaly is caused by the UHI effect, driven mostly by direct anthropogenic heating, while the rest is created by natural microclimatic variability over the undulating relief of the area. The current UHI effect can be as large as the projected, and already amplified, warming for the region in the 21st century. In contrast to earlier reports, this study found that the wintertime UHI in the Arctic should be largely attributed to direct anthropogenic heating. This is a strong argument in support of energy efficiency measures, urban climate change mitigation policy and against high-density urban development in polar settlements. The complex pattern of thermal conditions, as revealed in this study, challenges urban planners to account for the observed microclimatic diversity in perspective sustainable development solutions.</p

    Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes

    Get PDF
    We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model grants the existence of turbulence at any gradient Richardson number, Ri. Instead of its critical value separating - as usually assumed - the turbulent and the laminar regimes, it reveals a transition interval, 0.1< Ri <1, which separates two regimes of essentially different nature but both turbulent: strong turbulence at Ri<<1; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at Ri>1. Predictions from this model are consistent with available data from atmospheric and lab experiments, direct numerical simulation (DNS) and large-eddy simulation (LES).Comment: 40 pages, 6 figures, Boundary-layer Meteorology, resubmitted, revised versio
    • …
    corecore