178 research outputs found

    BENA435, a new cell-permeant photoactivated green fluorescent DNA probe

    Get PDF
    N′-(2,8-Dimethoxy-12-methyl-dibenzo [c,h] [1,5] naphthyridin-6-yl)-N,N-dimethyl-propane-1,3-diamine (BENA435) is a new cell-membrane permeant DNA dye with absorption/emission maxima in complex with DNA at 435 and 484 nm. This new reagent is unrelated to known DNA dyes, and shows a distinct preference to bind double-stranded DNA over RNA. Hydrodynamic studies suggest that BENA435 intercalates between the opposite DNA strands. BENA435 fluoresces much stronger when bound to dA/dT rather than dG/dC homopolymers. We evaluated 14 related dibenzonaphthyridine derivatives and found BENA435 to be superior in its in vivo DNA-binding properties. Molecular modelling was used to develop a model of BENA435 intercalation between base pairs of a DNA helix. BENA435 fluorescence in the nuclei of cells increases upon illumination, suggesting photoactivation. BENA435 represents thus the first known cell-permeant photoactivated DNA-binding dye

    Heteroepitaxial growth of ferromagnetic MnSb(0001) films on Ge/Si(111) virtual substrates

    Get PDF
    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent

    Spin-Dependent Transport in Fe/GaAs(100)/Fe Vertical Spin-Valves

    Get PDF
    The integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy. The spin-valve effect, which corresponds to the individual switching of the top and bottom Fe layers, is bias dependent and observed up to 20 K. We propose that the strongly bias-and temperature-dependent MR is associated with spin transport at the interfacial Fe/GaAs Schottky contacts and in the GaAs membranes, where balance between the barrier profiles as well as the dwell time to spin lifetime ratio are crucial factors for determining the device operations. The demonstration of the fabrication and spin injection in the vertical SV with a semiconductor interlayer is expected to open a new avenue in exploring the SFET

    Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves

    Full text link
    The nonlocal spin injection in lateral spin valves is highly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin valve voltage, which decides the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1 {\mu}V. Here we show that lateral spin valves with low resistive NiFe/MgO/Ag junctions enable the efficient spin injection with high applied current density, which leads to the spin valve voltage increased hundredfold. Hanle effect measurements demonstrate a long-distance collective 2-pi spin precession along a 6 {\mu}m long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin current based memory, logic and sensing devices.Comment: 23 pages, 4 figure

    Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia

    Get PDF
    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1—c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)—both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD

    METABOLISM OF INTRAVENOUS METHYLNALTREXONE IN MICE, RATS, DOGS AND HUMANS

    Get PDF
    were observed in rats. Dogs produced only one metabolite, MNTX-3-glucuronide (M9). In conclusion, MNTX was not extensively metabolized in humans. Conversion to methyl-6-naltrexol isomers (M4 and M5) and MNTX-3-sulfate (M2) were the primary pathways of metabolism in humans. MNTX was metabolized to a higher extent in mice than in rats, dogs, and humans. Glucuronidation was a major metabolic pathway in mice, rats and dogs, but not in humans. Overall, the data suggested species differences in the metabolism of MNTX
    corecore