12 research outputs found

    Shock induced boundary layer over a semi-infinite flat plate. Part 2: Complete problem

    Get PDF
    Numerical analysis of shock induced boundary layer flow on semi-infinite flat plate - Part

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model

    Impact of clinical phenotypes on management and outcomes in European atrial fibrillation patients: a report from the ESC-EHRA EURObservational Research Programme in AF (EORP-AF) General Long-Term Registry

    Get PDF
    Background: Epidemiological studies in atrial fibrillation (AF) illustrate that clinical complexity increase the risk of major adverse outcomes. We aimed to describe European AF patients\u2019 clinical phenotypes and analyse the differential clinical course. Methods: We performed a hierarchical cluster analysis based on Ward\u2019s Method and Squared Euclidean Distance using 22 clinical binary variables, identifying the optimal number of clusters. We investigated differences in clinical management, use of healthcare resources and outcomes in a cohort of European AF patients from a Europe-wide observational registry. Results: A total of 9363 were available for this analysis. We identified three clusters: Cluster 1 (n = 3634; 38.8%) characterized by older patients and prevalent non-cardiac comorbidities; Cluster 2 (n = 2774; 29.6%) characterized by younger patients with low prevalence of comorbidities; Cluster 3 (n = 2955;31.6%) characterized by patients\u2019 prevalent cardiovascular risk factors/comorbidities. Over a mean follow-up of 22.5 months, Cluster 3 had the highest rate of cardiovascular events, all-cause death, and the composite outcome (combining the previous two) compared to Cluster 1 and Cluster 2 (all P <.001). An adjusted Cox regression showed that compared to Cluster 2, Cluster 3 (hazard ratio (HR) 2.87, 95% confidence interval (CI) 2.27\u20133.62; HR 3.42, 95%CI 2.72\u20134.31; HR 2.79, 95%CI 2.32\u20133.35), and Cluster 1 (HR 1.88, 95%CI 1.48\u20132.38; HR 2.50, 95%CI 1.98\u20133.15; HR 2.09, 95%CI 1.74\u20132.51) reported a higher risk for the three outcomes respectively. Conclusions: In European AF patients, three main clusters were identified, differentiated by differential presence of comorbidities. Both non-cardiac and cardiac comorbidities clusters were found to be associated with an increased risk of major adverse outcomes

    Study of Z boson production in pPb collisions at √sNN=5.02 TeV

    Get PDF
    The production of Z bosons in pPb collisions at root S-NN = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions

    Measurement of the t(t)over-bar production cross section in pp collisions at root s=7 TeV in dilepton final states containing a tau

    Get PDF
    The top quark pair production cross section is measured in dilepton events with one electron or muon, and one hadronically decaying tau lepton from the decay t (t) over bar -> (l nu(l))((sic)(h)nu((sic)))b (b) over bar, (l = e, mu). The data sample corresponds to an integrated luminosity of 2.0 fb(-1) for the electron channel and 2.2 fb(-1) for the muon channel, collected by the CMS detector at the LHC. This is the first measurement of the t (t) over bar cross section explicitly including tau leptons in proton- proton collisions at root s = 7 TeV. The measured value sigma(t (t) over bar) = 143 +/- 14(stat) +/- 22(syst) +/- 3(lumi) pb is consistent with the standard model predictions

    Study of high-p(T) charged particle suppression in PbPb compared to pp collisions at root s(NN)=2.76 TeV

    Get PDF

    Nuclear modification of Y states in pPb collisions at √sNN = 5.02 TeV

    Get PDF
    Production cross sections of Υ(1S), Υ(2S), and Υ(3S) states decaying into μ+μ− in proton-lead (pPb) collisions are reported using data collected by the CMS experiment at √sNN = 5.02 TeV. A comparison is made with corresponding cross sections obtained with pp data measured at the same collision energy and scaled by the Pb nucleus mass number. The nuclear modification factor for Υ(1S) is found to be RpPb(Υ(1S)) = 0.806±0.024 (stat)±0.059 (syst). Similar results for the excited states indicate a sequential suppression pattern, such that RpPb(Υ(1S)) > RpPb(Υ(2S)) > RpPb(Υ(3S)). The suppression of all states is much less pronounced in pPb than in PbPb collisions, and independent of transverse momentum p Υ T and center-of-mass rapidity y Υ CM of the individual Υ state in the studied range p Υ T < 30 GeV/c and |y Υ CM| < 1.93. Models that incorporate final-state effects of bottomonia in pPb collisions are in better agreement with the data than those which only assume initial-state modifications

    Erratum to: Search for new physics in dijet angular distributions using proton-proton collisions at

    Get PDF
    Erratum to: Eur. Phys. J. C (2018) 78:789 https://doi.org/10.1140/epjc/s10052-018-6242-x In this article the author name Luigi Calligaris was incorrectly written as A. Calligaris. The original article has been corrected
    corecore