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ABSTRACT

The complete problem of shock induced boundary-layer
flow on a semi-infinite flat plate is analyzed. A previous
analysis which considered the flow only in the immediate
vicinity of the shock wave was extended to include leading
edge effects and served as the basis of the present study.
Calculations are shown for this truly unsteady problem for
both a perfect gas and a real gas in thermodynamic equilibrium.
Results are presented for the boundary-layer growth as a
function of time for various shock wave intensities. It is
shown that the predicted asymptotic approach of the leading-
edge flow to steady state values (as the shock wave moves
farther and farther along the plate) agrees very well with
experimental results based on wall heat transfer measurements
made by Felderman and Davies and Bernstein. Results are also
shown for the skin-friction coefficient and the Nusselt
number for a range of shock intensities and shock wave

locations.
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LIST OF SYMBOLS

D b2

Skin friction coefficient, (p 29] O//QQU
Gravitational constant, 32.174 ftZ;ec2
Dimensional static enthalpy, Btu/lbm
Joule mechanical equivalent of heat, 778.16 ft-lbf/Btu
Characteristic length, feet

Static pressure outside boundary layer

Prandtl number uCp/R

Reynolds number defined by peUeL/ue

Time, seconds

Velocity parallel to flat plate

Transverse velocity

The ratio of velocities across a stationary normal shock

Transverse independent variable

Greek Letters
Boundary-layer thickness, equation (4.1lc)
Displacement thickness, equation (4.1d)
Momentum thickness, equation (4.le)
Energy dissipation thickness, equation (4.1f)
Nondimensional transverse coordinate, /527523 v
Dynamic viscosity
Kinematic viscosity

Nondimensional transport variable, pu/pepe



vi

Density
Nondimensional longitudinal variable, x/L
Nondimensional time variable, Uet/L

Inverse of the gradient of the nondimensional velocity

given by (au*/an)_l

Subscripts and Superscripts
Variable evaluated ocutside the boundary lavyer
Indexing subscript as in ho' hl' etc.
Characteristic length of flat plate
Nodal index
Value of a variable evaluated at the wall
Denotes variable nondimensionalized with respect to its

value at the outer edge of the boundary layer in plate
fixed coordinates




1. INTRODUCTION

The complete problem of shock induced boundary-layer
flow on a semi-infinite flat plate will be considered in this
report. In a companion report [1l], the flow was analyzed in
the immediate vicinity of a plane shock wave moving over a
flat plate into a gas initially at rest. This previous analysis
will now be extended to.include the leading edge effect on
the flow and a solution will be sought which joins the leading
edge problem to the shock~vicinity problem into a complete
and continuous unsteady boundary-layer analysis. As in the
earlier work [1l], the semi-infinite flat plate will be assumed
to model a shock~tube splitter plate and the laminar boundarvy-
layer equations with zero pressure gradient will be considered
to adequately represent the flow (a discussion of solutions
of the Navier-Stokes equations at the leading edge for incom-
pressible flow may be found in [2]).

The flow under consideration is shown for three locations
of the shock wave in Figure 1. As shown in the figure, time
is measured relative to the shock passing the leading edge of
the plate. In keeping with reference [1l], it is assumad that
there is no attenuation of the shock wave and the gas will be
assumed either to be perfect or a real gas in thermodynamic
equilibrium. Also, in accordance with the earlier work, the

variation of thermodynamic variables such as density and
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Figure 1. Shock Induced Flow On a Semi-Infinite Flat Plate.



enthalpy are assumed to be monotonic across the boundary
layer.

In reference [1l], the method of weighted residuals or
MWR was employed as an analytical method for solving the
appropriate egquations. It was found, for example, that an
MWR first approximation was accurate to within about 6 per-
cent of the solution for wall shear stress given by Lam and
Crocco [3], while a second approximation agreed to better

than one percent. It is on this basis that the more compli-

cated problem to be treated here (i.e., including the leading

edge effects) will incorporate the MWR technigue in a second
approximation together with a finite difference method for

analyzing the complete unsteady flow.




2. MATHEMATICAL FORMULATION

The flow under consideration is a laminar two-~dimensional
boundary layer generated by a plane shock wave moving over &
semi-infinite flat plate, see Figure 1. Relative to the
plate, the shock wave is located a distance xs(t} from the
leading edge, where xs(t} = Ust and Us is the velocity of
the shock relative to the plate. In keeping with reference
[1], the following assumptions are made:

(i) The shock wave is plane, attached to the plate,

and does not attenuate with time.

(11) The conditions outside the boundary laver behind
the moving shock wave are adequately related to
the conditions ahead of the shock by the Rankine~
Hugoniot relation for a normal shock.

(ii1i) The boundary layer is laminar, at constant pressure,
and is adequately described by the classical two-
dimensional unsteady boundary-layer equations for
a compressible flow.

(iv) The fluid is considered to be either a perfect gas
with constant Prandtl number, or a real gas in
thermodynamic equilibrium.

In addition to these four assumptions, conditions at the

leading edge must be specified. An extensive survey of the

leading edge problem for incompressible flow is given in




reference [2]; this review shows that as long as low density
slip flow effects are not encountered, and as long as the
unit Reynolds number is greater than about 10 per foot, the
leading edge of the plate is felt upstream a distance of the
order of 3/vt. Thus, for typical pressures and temperatures
normally occurring in shock tube applications, it is adequate
for engineering purposes to apply the classical boundary-
layer assumptions to the leading edge without alteration.
Thus, a final assumption becomes:
(v} The boundary-layer equations adequately describe
the flow in the vicinity of the plate leading
edge, the leading edge itself being a mathematical
singular point in the classical fashion.
Under the above assumptions, the following governing

equations are obtained for flow relative to the plate:

Continuity

90 3pu qpv
T + ....__...3}{ —a~§-—- = 0 (2.1
Momentum
du du _ 3 Ju
T I T ( M3y (2.2
3P _ 0
3y ° (2.3a)
3P .
37 = O (flat plate case) (2.3}
Energy
2
3h 3h ah 3 1 3h y {3u
— * — — T = e — )
Pt T PSR T PVEy 'ay( Pr By )” z 7|3y (2.4)
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The thermodynamic and transport property relations are

assumed in the form:

p = pth)
o= uh) (2.5)
Pr = Pr(h)

The boundary conditions for velocity and static enthalpy are:

ul{x > xs,y,t) = (2.6a)
vi{x > xs,y,t) = {2.6b)
u(x,0,t) =0 (2.6c)
v(x,0,t) =0 (2.6d)
ulx,y » «@,t) ~ U, (2.6e)
u(xs,y > 0,t) = Ue {2.61f)
hix > xs,y,t) = hw {2.6q9)
h(x,0,t) = hw (2.60)
hix,y =+ o,t) = h, (2.61)
h(xs,y > 0,t) = he (2.67)

where u is the longitudinal velocity parallel to, and v is
the transverse velocity perpendicular to, the plate, respec-
tively. It will also be assumed that the wall temperature
remains constant during the flow. Thus

hw = constant (2 .6k

This last assumption can be justified by the large thermal
capacity of the splitter plate and the short duration of
shock tube flows. The initial and leading-edge conditions

are:

on
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It is convenient to normalize the dependent variables

in equations (2.1) to (2.6) with respect to their values in

the freestream, and to define nondimensional independent

variables as follows:
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where L is an arbitrary reference length. Under the above

transformation, the governing eguations become:

Continuity
Ip* dp*u* dpEvE PP
o + 5E 5T = 0 (2.8}
Momentum
Ju* su* Ju* ) du* )
el gk e b Krk T em e * i { sgg”;
Energy
£ 30 Lo dhr L ahx _d (pxoank) L Ve o fau)?
AT P a& e an an r on J gcﬂhe len |
(2.10)
Property equations
p* = p*(h*) (2.11a)
u* = yu¥* (h*) {2.11b}
Pr = Pr(h*%) (2.11c)
Boundary conditions:
u* (£ > gg,n,T) = ( {2.1z2a
v¥{g > ESIH,T) = { (2.12b)
u* (£,0,1) = 0O (2.12c
vE(£,0,T) = 0 (z.12d)
u* (g, nse, 1) > 1 (2.12e)
u*(e_,m>0,1) =1 (2.12F)
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Initial and leading-~edge conditions:

u*{£,n,0) =0 (2.12k)
v¥(g,n,0) = 0 (2.1248)
h*(g,n,0) = hw/he (2.12m)
u*(0,n>0,1) = 1 (2.12n)
v*¥{0,n>0,t) = 0 (2.120)
h*{(0,n>0,1) = 1 (2.12p

Equations (2.8), (2.9), and (2.10) are partial differen-
tial equations in the three independent variables, £, n, and
T. Solutions were obtained to these equations in reference
[1] for the immediate vicinity of the shock wave, that is,
subject to boundary conditions (2.12a) through (2.1273).
However, when the leading edge is taken into account, the
initial and leading-edge conditions, equations (2.12k)
through (2.12p), must be applied and the solution beccomes
much more complex. The complete solution to be considered
in this report, that is, including the leading-edge effects,
will build upon the previous results of reference [1]. The
next section will briefly review the analysis and results of
the shock-vicinity analysis, and then will describe how these

previous results are incorporated into the complete analysis.




3. ANALYSIS

In reference [l], the governing equations and boundary
conditions (2.8) to (2.10) and (2.12a) to (2.12]) were solved
in the vicinity of the shock wave by employing the nmethod of
weighted residuals or MWR to reduce the number of independent
variables from three to two. The resulting calculations for
an MWR second approximation were compared with Mirels' solu-
tions [4] for a perfect gas and showed agreement within one
percent for the skin-~friction coefficient. On the basis of
this close agreement, the MWR second approximation of reference
[1] will be employed to extend the analysis to the leading-
edge problem.

The full details of the MWR analysis are given in reference
[1] and will not be repeated here. Briefly, however, the
following steps are taken: Equations (2.8) and (2.9) are
combined by suitably employing a weighting function and the
resulting equation is integrated across the boundary laver.

The independent variable n is changed to u by introducing the

function
G = .@.1_}'.* =
an
Similar steps are taken with the energy equation, (2.10).

The dependent variables which appear in the resulting equa-

tions are then represented by an N-th order approximation.




For a second approximation, N=2, the expressions becoms

1 -
# & s . * % t o lal
p*o Tk [(1 2u*) poeo + u plel] (3.1la)
h* =~ a_ + a.u* + a u*2 {(3.1h)
Q 1 2 e
where
a, =h, =h /b (3.2a)
[ - (2.2h)
al Bho -+ 4hl 1 L £
= - £ Dy
a, 2ho 4hl + 2 (3.2
The parameters piei and hi for i = 0,1 are unknown functions

of T and ¢ and are determined by solving the following two

equations for pOGO and plel (in matrix form)
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(p 270 372 (py8y) {;},8(%
WA e f
L — L. U I - i - L wd

and hl is determined from the equation (note that h@ is
specified solely from the boundary conditions which

determine h  and h ).
W e
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In these two equations, the dots represent differentiation
with respect to 1 and the primes differentiation with respect
to £. The thermodynamic property variables appearing in
equation§ (3.3) and (3.4), ¢i and (¢/Pr)i, are functiocns of
the enthalpy field within the boundary layver: specifically
they are determined by a collocation procedure given in

reference [l]. The boundary and initial conditions (2.12)

become:
piei(E=O,T30) = 0 {(3.B5a
piei(£=is(f),Tzo) = 0 (3.5k)
for i = 0,1 and
hy(€=0,7120) = 1 (3.5c)

hy (=£_(7),720) = 1 (3.54)



Eguations (3.3) and (3.4) are nonlinear partial differen-
tial equations in the two independent variables 1 and £. It
was shown in reference [l] that for a pexrfect gas with ®@
and ¢, constant, it is possible to obtain an analytic sclution

to equation (3.3) in the vicinity of the shock wave; this -

solution is given by

0.8, = A, T ﬁ;’r-£ (
Jo25 -1

Jt
-
-
o
()
o

®

where the constant coefficients A, are found by iteration of
eguation (3.3). However, it is not possible to obtain such
a solution for either a perfect or real gas when the leading
edge condition (3.5a) is employed. Thus, a numerical approach
will be taken and solutions will be sought by considering an

appropriate finite difference technique.

3.1 Finite Difference Formulation

The - range of the independent variable £ may be taken to
be 0<£<1l since the reference length L is completely arbitrary.
However, the nondimensionalized time variable takes values
from zero when the shock wave arrives at the leading edge of
the flat plate to a value which in general is determined by
the arrival of the contact surface. From a purely computa-
tional standpoint, however, T may be assumed to vary from
zero to infinity. For this reason, it is convenient to reform-
ulate the governing equations by finite differencing the

independent variable which has a finite absolute range, and
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to treat the resulting difference equations as a system of
simultaneous ordinary differential equations for which a
solution may be found by solving for the dependent variables
at all the nodal points.

Let the nodal point located at the n-th position have a

coordinate (gn,T) given by

n n-1 n—~1
Then the nodal points given by

bn-1 = Gpp T AL, (3.7a)
and

Cpr1 = Ep T A8, (3.7b)

(for n=1,2,3,...) will be designated the neighboring nodes
of the point at En. In equations (3.7), the distance
between the n-th and the (n+l)-th nodes is equal to the
local step size Ain. In general, the internodal distance
need not be constant, but in this study a constant step size
will be éssumed. Thus the maximum number of nodes spanning

the length L of the flat plate is given by

N__o= 1/6E + 1 (3.8)

in which the first node is located at the leading adge, It
will be recalled that at 1=0, the shock wave just arrives at
- the leading edge, n=1, and as the flow progresses (i.e., at
any time greater than zero) the shock location determines the

point €=£S(T) with nodal number ng beyond which no flow exists.




froit

Thus at those nodal points downstream of ng the gas isg
"unaware" of the flow; therefore, the nodes for which finite-

difference equations need to be written are given by

ts SN
1l < n < Kg + 1 (3.9
It is evident from eguation (3.9) that the first node, et

has only right-hand neighbors, and any node ng at the foot
of the moving shock wave has only left-hand neighbors. The
values of piei and hi at the node n will be denoted by
piei (t,n) and hi {t,n) respectively.

The following eguations are the finite difference system
which approximates equations (3.3) and (3.4). The derivatives

of the dependent variables with respect to & will be approxi-

mated by a central difference

oo r - ; Y
5 0.8 01,8 -0 0, 01,8 ) .
. r m ( - o > 'ﬁ( ~ o PR ESS peay . LR R ~
q;lwg 3 -%“ - ) - L
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for 1 = 0, 2
.
anc
h,(1,8& “ho T, )
a . - .1( S\er"’“l ‘2( v -
—[h (+v £ )= . + 00AST)
R 1 n’n 2407 ;

(3.10b)

In the case of the end nodes (those having

on one side), the derivatives may be approximated by

Forward difference:
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Introducing eguations (3.10) into eguations (3.3) and (3.4)

yields the following equations:
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The variablas 2y @y, B, are defined for each nodal paoint
as follows
aj = h (3.14a)
a, = ~3ho + 4hl(T,£n) -1 (3.14h)
a, = 2hO - 4hl(T,£n) + 2 {3.14c¢)
The boundary and initial conditions become
piei(TEO,n=l) = 0 {3.15a)
piei(f>0,n=ns) = 0 (3.15b;
and
hl(rzo,n=l) = 1 (3,15

i

In equations (3.12) and (3.13), when gn E_ ., the nodal

Ry

index ng specifies the current location of the moving shock
wave. Because the flow does not exist at those nodal points
for which the nodal index n is greater than ng s the integra-
tion of equations (3.12) and (3.13) with respect to T is

performed for nS~2 nodes. It is clear from (3.9) and (3.15)

that no integration needs be performed for the nodes at n=1 and
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n=n . It may be noted that the magnitude of the nodal index
=n increases as the shock advances from its initial position
at the leading edge, n=1, to its maximum value given by ﬁmax
in equation (3.8) when the shock wave arrives at the point

x = L. It follows therefore that at the end of an integration
interval, the number by which ng is increased is proportional
to the nondimensional time step-size and the velociﬁy of propa-
gation of the wavefront; that is, for any given At step size,

the increment in the range of the flat plate affected by the

flow is proportional to the shock wave velocity.

3.2 Starting the Solution

A difficulty which needs to be resolved in starting the
solution of the unsteady problem in the entire region affected
by the flow is that of providing a realistic estimate of
values of the dependent variables for small times. Since the
dependent variables piei, i=0,1 occur as reciprocals in the
reduced momentum and energy equations, the initial conditions
given in equation (3.15a) with piei(g,o>=0 are unsatisfactory
for starting numerical integration. Thus several features of
this flow need to be considered in order to obtain a phvsically
meaningful starting formulation. In addition to the continuous
axial expansion of the boundary-layer flow on the plate, it may
be noted that for small times the distance between the leading
edge and the foot of the shock wave is in general small and
its magnitude is determined by the velocity of the moving

shock wave. This is an important feature of this flow which




-
fre)

distinguishes it from the similar problem of a flat plate
suddenly accelerated or impulsively moved in a surrounding

s tad

f43]

fluid initially at rest. In fact, for the suddenly-acceler

i

plate case, all gradients of velocity and temperature are zero
before the inception of the flow, but these gradients are
finite for any small time greater than zero since the flow
exists everywhere on the plate (the gradients can be estimated
from the related shock~vicinity problem in coordinates fixed
relative to the shock wave, the "Rayleigh" problem). In the
present shock induced leading-edge problem, however, not only
are the dependent variables to be estimated for small times,
it is clear that the estimate must be made in a short axial
region bounded by the leading edge and the foot of the shock
wave.

In reference [1], it was shown that a sufficiently
accurate evaluation of the dependent variables piei and &E
can be obtained in the shock-vicinity or "Rayleigh" region
of the flow. In the present leading-edge problem, it is
possible to identify a "Rayleigh" region which at any time
ends at the foot of the moving shock wave and extends upstream

at least to a point where £=1 (further upstream of this point,

¢

the flow will "feel" the leading edge). It is also reasonable

e

to propose that, after the shock wave moves past the leading
edge, the flow characteristics of the boundary layer at the

leading edge and stations downstream of it will develop con-
tinuously with time. At some intermediate point, the region

of the flow controlled by the leading edge should uniformly




blend into the region of the flow influenced by the location
of the moving shock. For computational reasons, it is
necessary to enforce a transition condition on the dependent
variables such that at the match point, the dependent variables
and their gradients must approach the same value from both
upstream and downstream. Thus the point £=71 is not a singu-
larity in the normal sense of the term; it represents a point
across which the governing equations cannot be applied in
their original form without imposing an auxillary smoothing
condition. This is a direct result, of course, of the boun-
dary—-layer equations being parabolic rather than elliptic
partial differential eguations.

In this study, the values of piei were estimated in the
"Rayleigh" region by means of the analytic perfect gas solu-
tion derived in reference [1], that is equation (3.6}, together
with equation (3.la) and the solution given by Mirels [4], as

modified by Lam and Crocco [3], in the form:

[
poeo = f
vV 2.82 == - 1

U
e

o N
10

Specifically, the constants AO and A, of equation (3.6} were

1
determined from equation (3.la) evaluated at u*=0 and u%=1/2,
respectively, with the left hand side of (3.la) assumed to be

given by the first approximation




evaluated using eguation (3.16). The resulting estimates
for Ai, substituted into (3.6), are assumed to provide the
starting values for poeo and plel in the "Rayvleigh” reglon,
ngggs, for £s = 0.1. The corresponding leading edge values,

0<f<t, were obtained by fitting a polynomial of the form

8. (5,7 ) = c¢_ + c,VYE + c,k (3.18)
pl l(;l O) o l g 25
such that
2imop, 8, (5, 7gme)= Lim o 8. (€, 1 %e) (3.19a)
e+0 - e D - v
1im é B, (¢ )] Tim 2 6. (z
- B ;-}; "I: NG T - =LA """"‘Cj‘ f:) o 2 e '(“(t“‘:*(f‘ ! P T Y
ey U0 i1 ¢ N 2E T o (3.190)
where

- (w—-1)
o © ts W

and w is the velocity ratio across a normal stationary shoclk,

The conditions prescribed in equations (3.19) ensure a
smooth transition between the leading-edge region and the
"Rayleigh" region, and thus provide the simultaneous egua-
tions required for calculating the coefficients in egquation
(3.18).

The starting conditions given by the above procedure not
only provide the nonzero values of piei which are required
for computational reasons, but properly describe the leading~

edge and "Rayleigh" region variation for the initial position




of the shock wave. The selection of the starting location
of the shock is arbitrary, but the final choice is such that
the flow duration associated with the shock at ES = (.1 is
less that ten percent of the total calculated flow time. In
addition it is necessary to minimize the initial value of &S
in order to obtain a satisfactory polynomial fit for the

leading edge region.

3.3 Continuing the Solution

The computation of the dependent variables piﬁi and h

Rond
¥

for increasing time is obtained by numerical integration of
equations (3.12) and (3.13) at each nodal point using a
fourth order Runga-Kutta method. The choice of interncdal
step size and time step size was made not only to ensure

that the behavior of piei is consistent with the model,

048, (£,720) > 0 (

L2}

.20
but also because the time and longitudinal space coordinates
are constrained such that
t = xS/Us
or in nondimensional valiables
T = £S(w—l)/w {(3.21)

The time increment i1s thus obtained as

At = AE(w~1) /w (3.22)
Hence, by choosing A, AT is determined from (3.22). The




2
iad

choice for Af is made such that the inequality (3.20) is
satisfied at each node point for all time. A value of AL = (.01
was found to be the most satisfactory.

In the physical domain, with AZ = 0.01, the corresponding
time step size is equivalent to the time it takes the shock
wavefront to traverse one percent of the total length L.

While this constraint may be too severe in the case of weak
shocks, it has distinct advantages for high intensity shocks;
for increasing shock intensities, the time step size is
decreasing, thus assuring a‘reasonable time resoclution of the
rate of growth of the dependent variables at each node. Per-
haps the best criterion for stability of the solution is given
by equation (3.20); in this study it was used as the basis for
discarding those step-sizes which yielded inconsistent results.

The computation for the time dependence of the variables
po6o, plel and hl at each node was obtained by int@graﬁimq’
(3.12) and (3.13) repeatedly for all nodal points n in the
range 2§n5ns—l. The node ng corresponds to the current location
of the shock wave, and at the end of each integration N is
increased by one. The node ns-l always lies in the "Rayleigh”
region, therefore its starting values can be estimated as
described above in Section 3.2. The resulting calculations,
then, are a combined MWR second approximation and finite
difference solution. Results were obtained for the approe
priate boundary-layer parameters and are presented in the

next section for both a perfect and a real gas.




4. CALCULATED RESULTS

v and h., obtained from the

P191r 1

finite difference eguations (3.12) and (3.13) by the method

The solutions for poeo,

described in the last section are substituted into eguations
(3.1a) and (3.1b) to yield the approximate solution for p#*§
and h* as a function of tv and £. In obtaining these calcu-
lations, the thermodynamic and transport variables o¥*, ¢,
and ¢/Pr are related to h* by polynomial curve fitting with
the coefficients evaluated by a collocation procedure: +the
details are given in reference [1l]. The thermodynamic egui-
librium real gas calculations reported here were made for
nitrogen using the transport and thermodynamic properties of
Ahtye and Peng [5] as curve fit by Marvin and Deiwert [67]:
again the details including tebular values, are given in.
reference [1]. All of the results reported here were made
assuming an initial pressure of 0.001 atm and an initial
temperature of 530°R. For the perfect gas calculations,
¢=1 and Pr = 0.72 were assumed.

The standard boundary~layer parameters may be computed
from the following definitions:

Skin-friction coefficient:

oY) o _,_ ¢
Ce.vRe, = -*w—~z:9 YRe_ = 9 {4.1a)
£ L 2 L p B
p U (ole]

e e




Velocity profile:
u’k

= f 8 du* (4.1b)
o}

L
L

%}
o
&

Boundary-layer thickness: ,

U
e
.@. = * g@ >¢i»k&
T VReL = J & du (4. Loy
O
Displacement thickness: *
Ue
* .
2" VRe, = J@(lwp*u*)du* (4.1d)
o
Momentum thickness: %
. Qe
Sw PR
I VReL = f p*gu* (1-u*}du* (4.1le}
o)
Energy dissipation thickness:
&
Ue
*kk ‘
% VReL = J p*@u*(l~u*2)du* (4.16)
o
Nusselt number:
Nu(.‘i:-ho) 1 [ah*} (4 e
- * w et
ReL @O ou aF=0
%
In these relations, ReL = UeL/\)e and Ue is arbitrarily taken

%
as U_ = 0.995.
e
The development of the boundary-layer thickness is shown

in figure 2 for the perfect gas case, and in figure 3 for the

L
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case in which the transport and thermodynamic properties are
evaluated from the real gas properties tabulated for nitrogen
Figures 2 and 3 show the manner of propagation of the leading
edge effect as the shock wave moves down the plate. The
region affected by the leading edge asymptotically increases
with the downstream movement of the shock‘wave. Thig obser-
vation applies to all intensities of the moving shock. The
comparison shown in figures 2 and 3 shows agreement with the
shock~vicinity analysis of reference [1l] in the region close
tc the shock wave. The deviation between the two solutlionsg
increases with distance away from the shock. The reason for
the unexpected waviness in the calculated curves downstream
of the maximum value is not known at present, however it is
probably a result of the numerical smoothing procedure at
the t=f point (this will be investigated in future studies).

Figure 4 shows the boundary-~layer thickness parameter at
that instant when the moving shock wave is located at 0.%9 L
for different values of the shock wave Mach number, MSQ
Unfortunately, the boundary-layer thickness parameter gilven
by equation (4.1c) tends to conceal the physical variation
of the boundary-layer thickness ¢ with shock wave Mach numbex
Ms because of the manner in which the Reynolds number

ReL = UeL/ve enters the calculation. To illustrate this

5]

point, figure 4 is replotted in figure 5 by assuming L i:

i

one foot and calculating the Reynolds number for the appro-
priate real gas properties. Figure 5 shows that the boundary
layer is in fact becoming thinner with increasing shock

intensities.
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It may be noted from figures 2 and 3 that the present
solution, accounting for the leading edge, is significantly
different than the shock-vicinity solution of reference [1]
except quite close to the shock wave. From a slightly
different viewpoint, these figures show that the majority of
the flow is truly unsteady, except for the steady flow
asymptote resulting from the leading edge conditions (i.e.,
the Blasius flow asymptote, which is the "exact” long-time
solution). The asymptotic approach of the leading-edge flow
to a steady state condition is given in figure 6. These
curves are defined as the locus of points in space and time
at which the boundaryv-layer thickness has reached %5 percent
of its steady state value. Similar results have been
cbtained experimentally by Felderman [7] and Davies and
Bernstein [8] based on wall heat transfer measurements. The
present results are compared with the experimental values in
figure 7 where it is seen that the agreement is very satis-~
factory over most of the range of the present calculations.

Figure 8 shows a comparison of skin friction results

3

obtained for the complete flow and the shock-vicinity analyses
for MS = 1.6. Again the agreement with the shock-vicinity
model is good near the shock wave and a progressively increasing
departure is observed as the leading edge is approached. It

is also seen that, as expected, there is no essential difference
between a perfect and a real gas calculation. Figure 9 shows
the skin friction distribution for two positions of the

moving shock wave for a perfect gas and Ms = 2.2. 1In figure



oy

Figure 6.

Locus of Points in Time and Space at Which
the Boundary~Layer Thickness Reaches 95
Percent of its Steady State Value;

Real Gas.

[
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Figure 8.
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£ = x/L

Comparison of Skin-Friction Coefficient
with Shock-Vicinity Solution [1] for

M_ = 1.6.
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Figure 9. Skin~Friction Variation Along the
Plate for Two Locations of the
Shock; Perfect Gas, MS = 2.2.




10 a comparison of the skin friction results for the complete
and the shock-vicinity analyses is shown for a perfect gas
with Ms = 3.15. Figure 11 shows the corresponding comparison
assuming a real gas for both the complete and the shock-
vicinity flows; it may be observed that the shock-vicinity
results deviate slightly more than was noted in figure 10.
The comparison shown in figure 12 is for'the variation of skin
friction for both a perfect and real gas with MS = 5, The
results show that the perfect gas model now yields a lower
value of skin friction at all points on the plate.

The evaluation of the heat transfer at the wall iz bhased
upon the Nusselt number as given in equation (4.1lg). Figure
13 shows the Nusselt number variation for both a perfect and
real gas with MS = 1.6 for the complete and the shock-vicinity
solutions. It is seen that the shock-vicinity solution departs
from the complete solution more than was observed previously
in connection with skin friction variation. A comparison of
the perfect and real gas solutions for shock wave Mach numbers
of 2.2, 5, and 12 are shown in figures 14, 15, and 16, res-
pectively. It is clear from these figures that the real gas
departure from the perfect gas calculations becomes &exy large
with increasing shock wave intensity. However, these figures
also show that the present solution appears to be encountering
numerical stability problems downstream of the shock wave
location. Since the hump shown in these figures, which obviously
increases with increasing values of MS, was not encountered in

the shock-vicinity calculations of reference [1] for the
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corresponding shock intensities, the cause probably lies
with the numerical smoothing procedure discussed earlier.
Again, this point will have to be investigated in more

detail in future work.
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5. SUMMARY AND CONCLUSIONS

The complete problem of‘shock induced boundary-layer
flow on a semi-infinite flat plate has béen solved by a com-
bined method of weighted residuals and finite difference
technique. The present analysis was developed as a direct
extension of the MWR second approximation given in reference
[1] for the flow in the vicinity of the shock wave. By modi-
fying the earlier work to account for the plate leading edge,
and introducing a finite difference scheme to treat the
resulting truly unsteady equations, solutions were obtained
for typical boundary-laver parameters for both a perfect and
real gas (nitrogen) for a range of shock wave Mach numbers
from 1.6 to 12.

It was shown that the calculated boundary-layer thickness
differs. significantly from the shock-vicinity calculations of
[1] except very close to the shock wave; of course, near the
leading edge the shock-vicinity solution breaks down completely.
It was also shown that the predicted asymptotic approach of
the leading~édge flow to steady-~state values (as the shock
wave moves farther and farther along the plate) agrees very
well with experimental results based on wall heat transfer
measurements.

Results were also shown for the skin-friction coefficient

and the Nusselt number for a variety of shock intensities and




shock wave locations for both a perfect and real gas calcula-
tions. As expected, it was shown that (i) the sclutions
agreed well with the shock~vicinity solutions near the shock
wave, and (ii) the perfect and real gas solutions departed
more and more from each other with increasing shock W&vé
Mach numbers. |

An unexpected anomology appeared in the calculations,
to some extent for the boundary-layer thickness but very
pronounced for the Nusselt number variation, as evidenced by
a waviness or dipping of the predicted curves between the
shock-wave location and the point where the respective curves
showed a marked departure to their leading-edge value. This
unusual behavior can probably be blamed on a numerical smoothing
procedure that was incorporated into the analysis as a result
of the parabolic nature of the original governing (boundary~
layer) equations. The point needs further work and possibly
could be resolved by considering a Navier-Stokes model for
the flow, rather than the boundary-layer model presently

employed.
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