42 research outputs found

    Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis

    Get PDF
    BACKGROUND: Treatment with glucocorticoids is associated with bone loss starting soon after therapy is initiated and an increased risk of fracture. METHODS: We performed a randomized, double-placebo, double-blind clinical trial of 18 months' duration among patients with a rheumatic disease who were starting glucocorticoids at a daily dose that was equivalent to at least 7.5 mg of prednisone. A total of 201 patients were assigned to receive either alendronate (10 mg) and a placebo capsule of alfacalcidol daily or alfacalcidol (1 mu g) and a placebo tablet of alendronate daily. The primary outcome was the change in bone mineral density of the lumbar spine in 18 months; the secondary outcome was the incidence of morphometric vertebral deformities. RESULTS: A total of 100 patients received alendronate, and 101 received alfacalcidol; 163 patients completed the study. The bone mineral density of the lumbar spine increased by 2.1 percent in the alendronate group (95 percent confidence interval, 1.1 to 3.1 percent) and decreased by 1.9 percent in the alfacalcidol group (95 percent confidence interval, -3.1 to -0.7 percent). At 18 months, the mean difference of change in bone mineral density between the two groups was 4.0 percent (95 percent confidence interval, 2.4 to 5.5 percent). Three patients in the alendronate group had a new vertebral deformity, as compared with eight patients in the alfacalcidol group (of whom three had symptomatic vertebral fractures) (hazard ratio, 0.4; 95 percent confidence interval, 0.1 to 1.4). CONCLUSIONS: During this 18-month trial in patients with rheumatic diseases, alendronate was more effective in the prevention of glucocorticoid-induced bone loss than was alfacalcidol

    Prevention of glucocorticoid induced osteoporosis with alendronate or alfacalcidol:Relations of change in bone mineral density, bone markers, and calcium homeostasis

    Get PDF
    Objective. To explore the relation of changes in measures of bone turnover and changes in bone mineral density (BMD) of the lumbar spine and total hip over 18 months in a double-blinded, randomized trial, comparing the effect of alfacalcidol (101 patients) versus alendronate (100 patients) on BMD in patients who recently started treatment with glucocorticoids for various rheumatic diseases. Methods. Associations between changes in serum procollagen type I C-propeptide (P1CP), fasting urine N-terminal telopeptide of type I collagen (NTx), serum calcium, parathyroid hormone (PTH), osteocalcin, and change from baseline in BMD over 18 months were explored with regression and correlation analyses. Results. In both treatment groups, there was a statistically significant decrease in NTx. In the alfacalcidol group there was also a significant increase in P1CP and osteocalcin, in contrast to the alendronate group, but BMD in the alfacalcidol decreased versus an increase in the alendronate group (p <0.001). In neither treatment group were changes in biochemical measures correlated with the change in BMD, with the exception of a negative correlation in the alendronate group between changes in total hip BMD and NTx. Use of alendronate resulted in an increased PTH in 27 patients, but the increase in BMD of these patients was not statistically significantly different compared to patients taking alendronate with normal PTH levels. Conclusion. Changes in BMD were not associated with changes in bone measures, with the exception of NTx in the alendronate group. For the patient taking glucocorticoids in clinical practice, the value of serial assessment of bone markers is low; changes in markers are no substitute for changes in BMD

    Equal Time Correlations in Haldane Gap Antiferromagnets

    Full text link
    The S=1S=1 antiferromagnetic Heisenberg chain both with and without single ion anisotropy is studied. Using the recently proposed density matrix renormalization group technique we calculate the energy gaps as well as several different correlation functions. The two gaps, Δ∣∣,Δ⊄\Delta_{||}, \Delta_\perp, along with associated correlation lengths and velocities are determined. The numerical results are shown to be in good agreement with theoretical predictions derived from the nonlinear sigma model and a free boson model. We also study the S=1/2S=1/2 excitations that occur at the ends of open chains; in particular we study the behavior associated with open boundary conditions, using a model of S=1/2S=1/2 spins coupled to the free bosons.Comment: 32 pages, uufiles encoded REVTEX 3.0, 19 postscript figures included, UBCTP-93-02

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Stories that matter: Verhalen van jongeren in een veranderende buurt

    No full text
    corecore