58 research outputs found

    Turbulent Mixing and Layer Formation in Double-Diffusive Convection: 3D Numerical Simulations and Theory

    Get PDF
    Double-diffusive convection, often referred to as semi-convection in astrophysics, occurs in thermally and compositionally stratified systems which are stable according to the Ledoux criterion but unstable according to the Schwarzschild criterion. This process has been given relatively little attention so far, and its properties remain poorly constrained. In this paper, we present and analyze a set of three-dimensional simulations of this phenomenon in a Cartesian domain under the Boussinesq approximation. We find that in some cases the double-diffusive convection saturates into a state of homogeneous turbulence, but with turbulent fluxes several orders of magnitude smaller than those expected from direct overturning convection. In other cases, the system rapidly and spontaneously develops closely packed thermo-compositional layers, which later successively merge until a single layer is left. We compare the output of our simulations with an existing theory of layer formation in the oceanographic context and find very good agreement between the model and our results. The thermal and compositional mixing rates increase significantly during layer formation and increase even further with each merger. We find that the heat flux through the staircase is a simple function of the layer height. We conclude by proposing a new approach to studying transport by double-diffusive convection in astrophysics

    “Being Guided”: What Oncofertility Patients’ Decisions Can Teach Us About the Efficacy of Autonomy, Agency, and Decision-Making Theory in the Contemporary Critical Encounter

    Get PDF
    Recent research on patient decision-making reveals a disconnect between theories of autonomy, agency, and decision-making and their practice in contemporary clinical encounters. This study examines these concepts in the context of female patients making oncofertility decisions in the United Kingdom in light of the phenomenon of “being guided.” Patients experience being guided as a way to cope with, understand, and defer difficult treatment decisions. Previous discussions condemn guided decision-making, but this research suggests that patients make an informed, autonomous decision to be guided by doctors. Thus, bioethicists must consider the multifaceted ways that patients enact their autonomy in medical encounters

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice

    JCMT BISTRO Survey: Magnetic Fields within the Hub-filament Structure in IC 5146

    Get PDF
    We present the 850 μm polarization observations toward the IC 5146 filamentary cloud taken using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and its associated polarimeter (POL-2), mounted on the James Clerk Maxwell Telescope, as part of the B-fields In STar forming Regions Observations. This work is aimed at revealing the magnetic field morphology within a core-scale (lesssim1.0 pc) hub-filament structure (HFS) located at the end of a parsec-scale filament. To investigate whether the observed polarization traces the magnetic field in the HFS, we analyze the dependence between the observed polarization fraction and total intensity using a Bayesian approach with the polarization fraction described by the Rice likelihood function, which can correctly describe the probability density function of the observed polarization fraction for low signal-to-noise ratio data. We find a power-law dependence between the polarization fraction and total intensity with an index of 0.56 in A V ~ 20–300 mag regions, suggesting that the dust grains in these dense regions can still be aligned with magnetic fields in the IC 5146 regions. Our polarization maps reveal a curved magnetic field, possibly dragged by the contraction along the parsec-scale filament. We further obtain a magnetic field strength of 0.5 ± 0.2 mG toward the central hub using the Davis–Chandrasekhar–Fermi method, corresponding to a mass-to-flux criticality of ~1.3 ± 0.4 and an Alfvénic Mach number of <0.6. These results suggest that gravity and magnetic field are currently of comparable importance in the HFS and that turbulence is less important

    London Trauma Conference 2015

    Full text link

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    • …
    corecore