26 research outputs found

    Caractérisation de la diversité des sites de fixation des protéines du groupe Polycomb chez la Drosophile

    No full text
    Polycomb group (PcG) complexes were initially discovered in Drosophila as transcriptionnal repressors of homeotic genes. To date, we know that they are involves in a large pleithora of biological processes including the maintenance of stem cells plasticity, differentiation, X chromosome inactivation and imprinting. PcG complexes are highly conserved from Drosophila to Humans and can be divided into two main complexes: PRC1 and PRC2 (Polycomb repressive complex 1 and 2). Both complexes have a histone modifying activity: PRC1 catalyses the mono-ubiquitination of the lysine 118 on histone H2A (H2AK118Ub) and PRC2 catalyses the tri-methylation of the lysine 27 on histone H3 (H3K27me3).In Drosophila, these complexes are recruited to cis regulatory elements named Polycomb Responsive Elements (PREs) that drive the epigenetic inheritance of silent chromatin states throughout development. Importantly, PcG complexes do not contain DNA-binding activity but are recruited to PREs via their interaction with Transcription Factors (TF) recognizing DNA motifs clustered at PREs. However the mechanism how PREs target PcG complexes is still not well understood due to the complexity of PcG recruitment, which is reflected at different levels: The DNA signature between PREs can differ significantly and several TF are implicated in PcG recruitment, but none of them is sufficient to recruit PcG complexes to PREs. Moreover PcG complexes can cooperate in different ways to stabilize each other’s binding. Finally, another layer of complexity is found at a more global level since PcG complexes do not only bind repressed sites, but they are also found at active regions.Therefore, our working hypothesis is that different classes of PREs exist in Drosophila. My PhD work was thus to define these different classes of PREs on a genome-wide scale and to functionally characterize them in order to get a complete molecular description of PRE function. Understanding how PcG complexes are recruited is of high importance, since deregulation of both, PcG complexes and their recruiting factors can led to cancer and diseases. My work led to the identification of six different classes of PREs that are characterized by different chromatin and genomic features. Interestingly the majority of PREs are associated with active genes that can be divided into housekeeping regulatory regions and developmental enhancers. In addition another class comprises bona fide chromatin domain boundaries. On the other hand PREs associated with repressed chromatin states shows features of previously described PREs and associate with repressed genes and PcG-associated histone marks. Finally another class comprises PREs that are likely in a poised chromatin state. We further demonstrated that PREs located at repressed and active regions differ in their combination of TF. In vivo analyses along with a transcriptomic analysis performed in cell lines mutated for a member of PcG complexes revealed that PcG complexes play a repressive role at both, active and repressed PREs.Taken together, our result suggest an unexpected heterogeneity of PREs and contributes to the better understanding of their characteristics and function.Les protĂ©ines du groupe Polycomb (PcG) ont initialement Ă©tĂ© identifiĂ©es chez la drosophile comme rĂ©presseurs transcriptionnels des gĂšnes homĂ©otiques. Aujourd’hui, nous savons que ces protĂ©ines jouent un rĂŽle bien plus large puisqu’elles rĂ©gulent des gĂšnes dont les produits sont impliquĂ©s dans de nombreux processus biologiques (rĂ©gulation des gĂšnes HOX, maintien de la plasticitĂ© des cellules souches, la diffĂ©renciation cellulaire, l’inactivation du chromosome X, la rĂ©gulation des gĂšnes soumis Ă  empreintes). Leur dĂ©rĂ©gulation est source de nombreux cancers chez l’homme. Hautement conservĂ©es, elles forment deux principaux complexes : PRC 1 et 2 (Polycomb repressive complex 1 and 2), dont l’activitĂ© est respectivement reflĂ©tĂ©e par la mono-ubiquitinylation de la lysine 118 l’histone H2A (H2AK118Ub) et la tri-mĂ©thylation de la lysine 27 de l’histone H3 (H3K27me3). Chez la Drosophile, les sites de fixation de ces complexes sont appelĂ©s PRE (Polycomb Responsive Elements) oĂč ils sont recrutĂ©s via des facteurs de transcription (FT).La complexitĂ© du recrutement des complexes du PcG, chez la Drosophile comme chez les mammifĂšres, est visible Ă  diffĂ©rents niveaux : au niveau de la sĂ©quence mĂȘme de leurs sites de fixations, au niveau des facteurs de transcription qui les recrutent, au niveau de l’interface entre les deux complexes PRC1 et PRC2 et enfin au niveau global, part le prĂ©sence de ces complexes au niveau de sites transcriptionnellement actifs. L’ensemble de ces rĂ©sultats dĂ©montre clairement la nature hĂ©tĂ©rogĂšne des PRE. Ces derniers diffĂšrent non seulement par leur sĂ©quence, mais Ă©galement par les FT qui les recrutent et enfin par la maniĂšre dont les complexes PcG sont recrutĂ©s (PRC2 recrute PRC1 ou le contraire). Mon projet de thĂšse s’est donc dessinĂ© autour d’une hypothĂšse : il existe diffĂ©rentes classes de PRE chez la Drosophile. Mon travail a donc consistĂ© Ă  dĂ©finir ces diffĂ©rentes classes et Ă  les caractĂ©riser pour en dĂ©duire des rĂŽles spĂ©cifiques Ă  l’échelle gĂ©nomique. En effet, l’implication des complexes du PcG dans l’apparition de cancer chez l’Homme requiĂšre que l’on comprenne comment ces protĂ©ines sont recrutĂ©es Ă  la chromatine.Mes travaux de thĂšse ont permis d’identifier six classes diffĂ©rentes de sites de fixation aux protĂ©ines du PcG. Nous avons retrouvĂ© une classe correspondant aux sites de fixations canoniques fixĂ©s par les protĂ©ines du PcG et prĂ©sents au sein de larges domaines rĂ©pressifs marquĂ©s par H3K27me3. Une seconde classe correspond Ă  des Ă©lĂ©ments de rĂ©gulation marquĂ©s par un Ă©tat de pause transcriptionnelle. De façon surprenante, nous avons dĂ©montrĂ© qu’une grande partie des sites de fixation des complexes du PcG Ă©tait localisĂ©e au niveau de rĂ©gions transcriptionnellement actives. Ces classes de PRE diffĂšrent en particulier en Ă©lĂ©ments gĂ©nomiques qui les composent. Deux classes correspondent Ă  des enhancers dĂ©veloppementaux. Une classe correspond Ă  des promoteurs actifs pouvant rĂ©guler des gĂšnes de mĂ©nage. Enfin, une derniĂšre classe correspond Ă  des bordures de TAD. Les sites actifs et rĂ©primĂ©s fixĂ©s par le PcG fixent Ă©galement des combinaisons diffĂ©rentes de FT. Des analyses in vivo associĂ©es Ă  un transcriptome rĂ©alisĂ© Ă  partir de cellules mutantes pour une protĂ©ine du PcG rĂ©vĂšlent que les complexes du PcG jouent Ă©galement un rĂŽle de rĂ©presseur transcriptionnel au niveau des sites actifs. L’ensemble de ces rĂ©sultats suggĂšre une hĂ©tĂ©rogĂ©nĂ©itĂ© inattendue des sites de fixation des complexes du PcG et permettra de mieux comprendre les caractĂ©ristiques liĂ©es Ă  ces protĂ©ines dont la dĂ©rĂ©gulation mĂšne Ă  l’apparition de cancers chez l’Homme marquĂ©s par leur agressivitĂ©

    Characterization of the diversity of the Polycomb group complexes Binding sites in Drosophila

    No full text
    Les protĂ©ines du groupe Polycomb (PcG) ont initialement Ă©tĂ© identifiĂ©es chez la drosophile comme rĂ©presseurs transcriptionnels des gĂšnes homĂ©otiques. Aujourd’hui, nous savons que ces protĂ©ines jouent un rĂŽle bien plus large puisqu’elles rĂ©gulent des gĂšnes dont les produits sont impliquĂ©s dans de nombreux processus biologiques (rĂ©gulation des gĂšnes HOX, maintien de la plasticitĂ© des cellules souches, la diffĂ©renciation cellulaire, l’inactivation du chromosome X, la rĂ©gulation des gĂšnes soumis Ă  empreintes). Leur dĂ©rĂ©gulation est source de nombreux cancers chez l’homme. Hautement conservĂ©es, elles forment deux principaux complexes : PRC 1 et 2 (Polycomb repressive complex 1 and 2), dont l’activitĂ© est respectivement reflĂ©tĂ©e par la mono-ubiquitinylation de la lysine 118 l’histone H2A (H2AK118Ub) et la tri-mĂ©thylation de la lysine 27 de l’histone H3 (H3K27me3). Chez la Drosophile, les sites de fixation de ces complexes sont appelĂ©s PRE (Polycomb Responsive Elements) oĂč ils sont recrutĂ©s via des facteurs de transcription (FT).La complexitĂ© du recrutement des complexes du PcG, chez la Drosophile comme chez les mammifĂšres, est visible Ă  diffĂ©rents niveaux : au niveau de la sĂ©quence mĂȘme de leurs sites de fixations, au niveau des facteurs de transcription qui les recrutent, au niveau de l’interface entre les deux complexes PRC1 et PRC2 et enfin au niveau global, part le prĂ©sence de ces complexes au niveau de sites transcriptionnellement actifs. L’ensemble de ces rĂ©sultats dĂ©montre clairement la nature hĂ©tĂ©rogĂšne des PRE. Ces derniers diffĂšrent non seulement par leur sĂ©quence, mais Ă©galement par les FT qui les recrutent et enfin par la maniĂšre dont les complexes PcG sont recrutĂ©s (PRC2 recrute PRC1 ou le contraire). Mon projet de thĂšse s’est donc dessinĂ© autour d’une hypothĂšse : il existe diffĂ©rentes classes de PRE chez la Drosophile. Mon travail a donc consistĂ© Ă  dĂ©finir ces diffĂ©rentes classes et Ă  les caractĂ©riser pour en dĂ©duire des rĂŽles spĂ©cifiques Ă  l’échelle gĂ©nomique. En effet, l’implication des complexes du PcG dans l’apparition de cancer chez l’Homme requiĂšre que l’on comprenne comment ces protĂ©ines sont recrutĂ©es Ă  la chromatine.Mes travaux de thĂšse ont permis d’identifier six classes diffĂ©rentes de sites de fixation aux protĂ©ines du PcG. Nous avons retrouvĂ© une classe correspondant aux sites de fixations canoniques fixĂ©s par les protĂ©ines du PcG et prĂ©sents au sein de larges domaines rĂ©pressifs marquĂ©s par H3K27me3. Une seconde classe correspond Ă  des Ă©lĂ©ments de rĂ©gulation marquĂ©s par un Ă©tat de pause transcriptionnelle. De façon surprenante, nous avons dĂ©montrĂ© qu’une grande partie des sites de fixation des complexes du PcG Ă©tait localisĂ©e au niveau de rĂ©gions transcriptionnellement actives. Ces classes de PRE diffĂšrent en particulier en Ă©lĂ©ments gĂ©nomiques qui les composent. Deux classes correspondent Ă  des enhancers dĂ©veloppementaux. Une classe correspond Ă  des promoteurs actifs pouvant rĂ©guler des gĂšnes de mĂ©nage. Enfin, une derniĂšre classe correspond Ă  des bordures de TAD. Les sites actifs et rĂ©primĂ©s fixĂ©s par le PcG fixent Ă©galement des combinaisons diffĂ©rentes de FT. Des analyses in vivo associĂ©es Ă  un transcriptome rĂ©alisĂ© Ă  partir de cellules mutantes pour une protĂ©ine du PcG rĂ©vĂšlent que les complexes du PcG jouent Ă©galement un rĂŽle de rĂ©presseur transcriptionnel au niveau des sites actifs. L’ensemble de ces rĂ©sultats suggĂšre une hĂ©tĂ©rogĂ©nĂ©itĂ© inattendue des sites de fixation des complexes du PcG et permettra de mieux comprendre les caractĂ©ristiques liĂ©es Ă  ces protĂ©ines dont la dĂ©rĂ©gulation mĂšne Ă  l’apparition de cancers chez l’Homme marquĂ©s par leur agressivitĂ©.Polycomb group (PcG) complexes were initially discovered in Drosophila as transcriptionnal repressors of homeotic genes. To date, we know that they are involves in a large pleithora of biological processes including the maintenance of stem cells plasticity, differentiation, X chromosome inactivation and imprinting. PcG complexes are highly conserved from Drosophila to Humans and can be divided into two main complexes: PRC1 and PRC2 (Polycomb repressive complex 1 and 2). Both complexes have a histone modifying activity: PRC1 catalyses the mono-ubiquitination of the lysine 118 on histone H2A (H2AK118Ub) and PRC2 catalyses the tri-methylation of the lysine 27 on histone H3 (H3K27me3).In Drosophila, these complexes are recruited to cis regulatory elements named Polycomb Responsive Elements (PREs) that drive the epigenetic inheritance of silent chromatin states throughout development. Importantly, PcG complexes do not contain DNA-binding activity but are recruited to PREs via their interaction with Transcription Factors (TF) recognizing DNA motifs clustered at PREs. However the mechanism how PREs target PcG complexes is still not well understood due to the complexity of PcG recruitment, which is reflected at different levels: The DNA signature between PREs can differ significantly and several TF are implicated in PcG recruitment, but none of them is sufficient to recruit PcG complexes to PREs. Moreover PcG complexes can cooperate in different ways to stabilize each other’s binding. Finally, another layer of complexity is found at a more global level since PcG complexes do not only bind repressed sites, but they are also found at active regions.Therefore, our working hypothesis is that different classes of PREs exist in Drosophila. My PhD work was thus to define these different classes of PREs on a genome-wide scale and to functionally characterize them in order to get a complete molecular description of PRE function. Understanding how PcG complexes are recruited is of high importance, since deregulation of both, PcG complexes and their recruiting factors can led to cancer and diseases. My work led to the identification of six different classes of PREs that are characterized by different chromatin and genomic features. Interestingly the majority of PREs are associated with active genes that can be divided into housekeeping regulatory regions and developmental enhancers. In addition another class comprises bona fide chromatin domain boundaries. On the other hand PREs associated with repressed chromatin states shows features of previously described PREs and associate with repressed genes and PcG-associated histone marks. Finally another class comprises PREs that are likely in a poised chromatin state. We further demonstrated that PREs located at repressed and active regions differ in their combination of TF. In vivo analyses along with a transcriptomic analysis performed in cell lines mutated for a member of PcG complexes revealed that PcG complexes play a repressive role at both, active and repressed PREs.Taken together, our result suggest an unexpected heterogeneity of PREs and contributes to the better understanding of their characteristics and function

    Cooperativity, Specificity, and Evolutionary Stability of Polycomb Targeting in Drosophila

    Get PDF
    Summary: Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG) response elements (PREs) recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila. : Schuettengruber et al. present an extensive comparative epigenomics data set, providing new insights into cis-driven versus buffered evolution of Polycomb recruitment and Polycomb domain specificity. Using chromatin immunoprecipitation sequencing and transgenic assays, they demonstrate an extremely high conservation of Polycomb repressive domains in five Drosophila species. Using Hi-C and knockout experiments, they challenge the standard hierarchical Polycomb recruitment model and demonstrate that cooperative rather than hierarchical interactions among DNA motifs, transcription factors, and Polycomb group complexes define Polycomb domains

    DNA methylation regulates TMEM16A/ANO1 expression through multiple CpG islands in head and neck squamous cell carcinoma

    No full text
    Abstract ANO1 is a calcium-activated chloride channel that is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) and other cancers. While ANO1 expression negatively correlates with survival in several cancers, its epigenetic regulation is poorly understood. We analyzed HNSCC samples from TCGA and a separate dataset of HPV+ oropharyngeal squamous cell carcinoma (OPSCC) samples to identify differentially methylated regions. E6 and E7 transfected normal oral keratinocytes (NOK) were used to induce hypermethylation of the ANO1 promoter. We found three CpG islands that correlated with ANO1 expression, including two positively correlated with expression. Using two HNSCC datasets with differential expression of ANO1, we showed hypermethylation of positively correlated CpG islands potentiates ANO1 expression. E7 but not E6 transfection of NOK cells led to hypermethylation of a positively correlated CpG island without a change in ANO1 expression. ANO1 promoter methylation was also correlated with patient survival. Our results are the first to show the contribution of positively correlated CpG’s for regulating gene expression in HNSCC. Hypermethylation of the ANO1 promoter was strongly correlated with but not sufficient to increase ANO1 expression, suggesting methylation of positively correlated CpG’s likely serves as an adjunct to other mechanisms of ANO1 activation

    Selezione clonale del vitigno Ansonica in Toscana = Clonal selection of Ansonica grapevine variety in Tuscany

    Get PDF
    Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells
    corecore