87 research outputs found
Exploration of signals of positive selection derived from genotype-based human genome scans using re-sequencing data.
We have investigated whether regions of the genome showing signs of positive selection in scans based on haplotype structure also show evidence of positive selection when sequence-based tests are applied, whether the target of selection can be localized more precisely, and whether such extra evidence can lead to increased biological insights. We used two tools: simulations under neutrality or selection, and experimental investigation of two regions identified by the HapMap2 project as putatively selected in human populations. Simulations suggested that neutral and selected regions should be readily distinguished and that it should be possible to localize the selected variant to within 40 kb at least half of the time. Re-sequencing of two ~300 kb regions (chr4:158Mb and chr10:22Mb) lacking known targets of selection in HapMap CHB individuals provided strong evidence for positive selection within each and suggested the micro-RNA gene hsa-miR-548c as the best candidate target in one region, and changes in regulation of the sperm protein gene SPAG6 in the other
Livestock-associated Methicillin-Resistant Staphylococcus aureus Sequence Type 398 in Humans, Canada
Recent emergence of infections resulting from this strain is of public health concern
Extent, causes, and consequences of small RNA expression variation in human adipose tissue.
Small RNAs are functional molecules that modulate mRNA transcripts and have been implicated in the aetiology of several common diseases. However, little is known about the extent of their variability within the human population. Here, we characterise the extent, causes, and effects of naturally occurring variation in expression and sequence of small RNAs from adipose tissue in relation to genotype, gene expression, and metabolic traits in the MuTHER reference cohort. We profiled the expression of 15 to 30 base pair RNA molecules in subcutaneous adipose tissue from 131 individuals using high-throughput sequencing, and quantified levels of 591 microRNAs and small nucleolar RNAs. We identified three genetic variants and three RNA editing events. Highly expressed small RNAs are more conserved within mammals than average, as are those with highly variable expression. We identified 14 genetic loci significantly associated with nearby small RNA expression levels, seven of which also regulate an mRNA transcript level in the same region. In addition, these loci are enriched for variants significant in genome-wide association studies for body mass index. Contrary to expectation, we found no evidence for negative correlation between expression level of a microRNA and its target mRNAs. Trunk fat mass, body mass index, and fasting insulin were associated with more than twenty small RNA expression levels each, while fasting glucose had no significant associations. This study highlights the similar genetic complexity and shared genetic control of small RNA and mRNA transcripts, and gives a quantitative picture of small RNA expression variation in the human population
Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis
Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis
Transcriptome-Wide Prediction of miRNA Targets in Human and Mouse Using FASTH
Transcriptional regulation by microRNAs (miRNAs) involves complementary base-pairing at target sites on mRNAs, yielding complex secondary structures. Here we introduce an efficient computational approach and software (FASTH) for genome-scale prediction of miRNA target sites based on minimizing the free energy of duplex structure. We apply our approach to identify miRNA target sites in the human and mouse transcriptomes. Our results show that short sequence motifs in the 5′ end of miRNAs frequently match mRNAs perfectly, not only at validated target sites but additionally at many other, energetically favourable sites. High-quality matching regions are abundant and occur at similar frequencies in all mRNA regions, not only the 3′UTR. About one-third of potential miRNA target sites are reassigned to different mRNA regions, or gained or lost altogether, among different transcript isoforms from the same gene. Many potential miRNA target sites predicted in human are not found in mouse, and vice-versa, but among those that do occur in orthologous human and mouse mRNAs most are situated in corresponding mRNA regions, i.e. these sites are themselves orthologous. Using a luciferase assay in HEK293 cells, we validate four of six predicted miRNA-mRNA interactions, with the mRNA level reduced by an average of 73%. We demonstrate that a thermodynamically based computational approach to prediction of miRNA binding sites on mRNAs can be scaled to analyse complete mammalian transcriptome datasets. These results confirm and extend the scope of miRNA-mediated species- and transcript-specific regulation in different cell types, tissues and developmental conditions
Antiretroviral activity of 5-azacytidine during treatment of a HTLV-1 positive myelodysplastic syndrome with autoimmune manifestations
Myelodysplastic syndromes (MDS) are often accompanied by autoimmune phenomena. The underlying mechanisms for these associations remain uncertain, although T cell activation seems to be important. Human T-lymphotropic virus (HTLV-1) has been detected in patients with myelodysplastic syndromes, mostly in regions of the world which are endemic for the virus, and where association of HTLV-1 with rheumatological manifestation is not rare. We present here the case of a 58 year old man who presented with cytopenias, leukocytoclastic vasculitis of the skin and glomerulopathy, and was diagnosed as MDS (refractory anemia with excess blasts - RAEB 1). The patient also tested positive for HTLV-1 by PCR. After 8 monthly cycles of 5-azacytidine he achieved a complete hematologic remission. Following treatment, a second PCR for HTLV-1 was carried out and found to be negative. This is the first report in the literature of a HTLV-1-positive MDS with severe autoimmune manifestations, which was treated with the hypomethylating factor 5-azacitidine, achieving cytogenetic remission with concomitant resolution of the autoimmune manifestations, as well as HTLV-1-PCR negativity. HTLV-1-PCR negativity may be due to either immune mediated clearance of the virus, or a potential antiretroviral effect of 5-azacytidine. 5-azacytidine is known for its antiretroviral effects, although there is no proof of its activity against HTLV-1 infection in vivo
Association of respiratory symptoms and lung function with occupation in the multinational Burden of Obstructive Lung Disease (BOLD) study
Background
Chronic obstructive pulmonary disease has been associated with exposures in the workplace. We aimed to assess the association of respiratory symptoms and lung function with occupation in the Burden of Obstructive Lung Disease study.
Methods
We analysed cross-sectional data from 28 823 adults (≥40 years) in 34 countries. We considered 11 occupations and grouped them by likelihood of exposure to organic dusts, inorganic dusts and fumes. The association of chronic cough, chronic phlegm, wheeze, dyspnoea, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1)/FVC with occupation was assessed, per study site, using multivariable regression. These estimates were then meta-analysed. Sensitivity analyses explored differences between sexes and gross national income.
Results
Overall, working in settings with potentially high exposure to dusts or fumes was associated with respiratory symptoms but not lung function differences. The most common occupation was farming. Compared to people not working in any of the 11 considered occupations, those who were farmers for ≥20 years were more likely to have chronic cough (OR 1.52, 95% CI 1.19–1.94), wheeze (OR 1.37, 95% CI 1.16–1.63) and dyspnoea (OR 1.83, 95% CI 1.53–2.20), but not lower FVC (β=0.02 L, 95% CI −0.02–0.06 L) or lower FEV1/FVC (β=0.04%, 95% CI −0.49–0.58%). Some findings differed by sex and gross national income.
Conclusion
At a population level, the occupational exposures considered in this study do not appear to be major determinants of differences in lung function, although they are associated with more respiratory symptoms. Because not all work settings were included in this study, respiratory surveillance should still be encouraged among high-risk dusty and fume job workers, especially in low- and middle-income countries.publishedVersio
Prevalence of chronic cough, its risk factors and population attributable risk in the Burden of Obstructive Lung Disease (BOLD) study: a multinational cross-sectional study
© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)Background: Chronic cough is a common respiratory symptom with an impact on daily activities and quality of life. Global prevalence data are scarce and derive mainly from European and Asian countries and studies with outcomes other than chronic cough. In this study, we aimed to estimate the prevalence of chronic cough across a large number of study sites as well as to identify its main risk factors using a standardised protocol and definition.
Methods: We analysed cross-sectional data from 33,983 adults (≥40 years), recruited between Jan 2, 2003 and Dec 26, 2016, in 41 sites (34 countries) from the Burden of Obstructive Lung Disease (BOLD) study. We estimated the prevalence of chronic cough for each site accounting for sampling design. To identify risk factors, we conducted multivariable logistic regression analysis within each site and then pooled estimates using random-effects meta-analysis. We also calculated the population attributable risk (PAR) associated with each of the identifed risk factors.
Findings: The prevalence of chronic cough varied from 3% in India (rural Pune) to 24% in the United States of America (Lexington,KY). Chronic cough was more common among females, both current and passive smokers, those working in a dusty job, those with a history of tuberculosis, those who were obese, those with a low level of education and those with hypertension or airflow limitation. The most influential risk factors were current smoking and working in a dusty job.
Interpretation: Our findings suggested that the prevalence of chronic cough varies widely across sites in different world regions. Cigarette smoking and exposure to dust in the workplace are its major risk factors.info:eu-repo/semantics/publishedVersio
Prevalence of chronic cough, its risk factors and population attributable risk in the Burden of Obstructive Lung Disease (BOLD) study: a multinational cross-sectional study
Background: Chronic cough is a common respiratory symptom with an impact on daily activities and quality of life. Global prevalence data are scarce and derive mainly from European and Asian countries and studies with outcomes other than chronic cough. In this study, we aimed to estimate the prevalence of chronic cough across a large number of study sites as well as to identify its main risk factors using a standardized protocol and definition. Methods: We analyzed cross-sectional data from 33,983 adults (≥40 years), recruited between Jan 2, 2003 and Dec 26, 2016, in 41 sites (34 countries) from the Burden of Obstructive Lung Disease (BOLD) study. We estimated the prevalence of chronic cough for each site accounting for sampling design. To identify risk factors, we conducted multivariable logistic regression analysis within each site and then pooled estimates using random-effects meta-analysis. We also calculated the population-attributable risk (PAR) associated with each of the identified risk factors. Findings: The prevalence of chronic cough varied from 3% in India (rural Pune) to 24% in the United States of America (Lexington, KY). Chronic cough was more common among females, both current and passive smokers, those working in a dusty job, those with a history of tuberculosis, those who were obese, those with a low level of education, and those with hypertension or airflow limitation. The most influential risk factors were current smoking and working in a dusty job. Interpretation: Our findings suggested that the prevalence of chronic cough varies widely across sites in different world regions. Cigarette smoking and exposure to dust in the workplace are its major risk factors.info:eu-repo/semantics/publishedVersio
- …