76 research outputs found

    Elimination of Potential Pathogenic Microorganisms in Sewage Sludge Using Electron Beam Irradiation

    Get PDF
    Microbiological analyses on municipal sewage sludge sample treated in a pilot plant process utilizing an electron accelerator with a beam energy of 3 MeV were conducted as a way to show the potential of this technology to decontaminate sludge containing 15% solids. Bacterial counts including total heterotrophic bacterial, total coliform, and fecal coliform counts were performed on sewage sludge samples pre- and postirradiation with the electron beam at doses ranging between 2.7 and 30.7 kGy. At each irradiation dose, bacterial and Ascaris ova counts and survival were measured in triplicate as colony forming units (CFUs) per milliliter (ml) of sewage sludge. Experimental results obtained revealed that a dose of 6.7 kGy is enough to reduce bacterial load to consider the treated sewage sludge safe for both the environment and human according to the Environmental Protection Agency standards. However, a dose of 25.7 kGy was needed to reduce the concentration of Ascaris ova at levels deemed safe for land applications. This study also showed that electron beam treatment is less energy consuming with shorter processing times than conventional techniques used to decontaminate sludge. Taken altogether, these observations open new avenues for large urban agglomerations to save money on sewage sludge treatment

    Evaluation of direct costs associated with the management of clinical stage of malaria in children under five years old in Gabon

    Get PDF
    BACKGROUND: Malaria is one of the leading causes of morbidity and mortality in African countries. It is one of the leading causes of hospital visits and hospitalization in pediatric wards for children under 5 years old. Interestingly however, the economic burden of this disease remains unknown in these endemic countries including Gabon. The purpose of this study is to assess the direct hospital cost for the management of malaria in children under 5 years old at the Libreville University Hospital Centre (CHUL, Centre Hospitalier Universitaire de Libreville) in Gabon. METHODS: This research work is a retrospective study using a comprehensive review of medical records of patients seen at the CHUL over a two-year period extending from January 2018 through December 2019. The study focused on children under 5 years old, admitted for malaria in the paediatric ward of the CHUL. The analysis targeted specifically direct hospital costs, which excluded salary and wages of health care workers. The monetary currency used in this study was the CFA francs, as that currency is the one used in Central Africa (as reference, 1 Euro = 656 CFA francs). RESULTS: For the set timeframe, 778 patient records matched the study criteria. Thus, out of 778 admitted patients, 58.4% were male while 41.5% were female. Overall, the average age was 13.2 months (± 13.8 months). The total cost incurred by the hospital for the management of these 778 malaria patients was 94,922,925 CFA francs (144,699.58 €), for an average expense per patient topping at 122,008 CFA francs (185.99 €). The highest expenditure items were hospitalizations (44,200,000 CFA francs, 67,378.1 €), followed by drugs (26,394,425 CFA francs, 40,235.4 €) and biomedical examinations (14,036,000 CFA francs, 21,396.34 €). CONCLUSION: The financial burden for managing malaria in the paediatric ward seems to be very high, not only for the hospital, but also for families in spite of the government medical insurance coverage in some cases. These findings bring new insights as to the urgency to develop policies that foster preventive initiatives over curative approaches in the management of malaria in children in endemic countries

    A novel TetR-like transcriptional regulator is induced in acid-nitrosative stress and controls expression of an efflux pump in mycobacteria

    Get PDF
    Mycobacterium tuberculosis has the ability to survive inside macrophages under acid-nitrosative stress. M. tuberculosis Rv1685c and its ortholog in M. smegmatis, MSMEG_3765, are induced on exposure to acid-nitrosative stress. Both genes are annotated as TetR transcriptional regulators, a family of proteins that regulate a wide range of cellular activities, including multidrug resistance, carbon catabolism and virulence. Here, we demonstrate that MSMEG_3765 is co-transcribed with the upstream genes MSMEG_3762 and MSMEG_3763, encoding efflux pump components. RTq-PCR and GFP-reporter assays showed that the MSMEG_3762/63/65 gene cluster, and the orthologous region in M. tuberculosis (Rv1687c/86c/85c), was up-regulated in a MSMEG_3765 null mutant, suggesting that MSMEG_3765 acts as a repressor, typical of this family of regulators. We further defined the MSMEG_3765 regulon using genome-wide transcriptional profiling and used reporter assays to confirm that the MSMEG_3762/63/65 promoter was induced under acid-nitrosative stress. A putative 36 bp regulatory motif was identified upstream of the gene clusters in both M. smegmatis and M. tuberculosis and purified recombinant MSMEG_3765 protein was found to bind to DNA fragments containing this motif from both M. smegmatis and M. tuberculosis upstream regulatory regions. These results suggest that the TetR repressor MSMEG_3765/Rv1685c controls expression of an efflux pump with an, as yet, undefined role in the mycobacterial response to acid-nitrosative stress

    Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions

    Get PDF
    BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1696-9) contains supplementary material, which is available to authorized users

    Crystal structure of IcaR, a repressor of the TetR family implicated in biofilm formation in Staphylococcus epidermidis

    Get PDF
    Expression of the gene cluster icaADBC is necessary for biofilm production in Staphylococcus epidermidis. The ica operon is negatively controlled by the repressor IcaR. Here, the crystal structure of IcaR was determined and the refined structure revealed a homodimer comprising entirely α-helices, typical of the tetracycline repressor protein family for gene regulations. The N-terminal domain contains a conserved helix-turn-helix DNA-binding motif with some conformational variations, indicating flexibility in this region. The C-terminal domain shows a complementary surface charge distribution about the dyad axis, ideal for efficient and specific dimer formation. The results of the electrophoretic mobility shift assay and isothermal titration calorimetry suggested that a 28 bp core segment of the ica operator is implicated in the cooperative binding of two IcaR dimers on opposite sides of the duplex DNA. Computer modeling based on the known DNA-complex structure of QacR and site-specific mutagenesis experiments showed that direct protein–DNA interactions are mostly conserved, but with slight variations for recognizing the different sequences. By interfering with the binding of IcaR to DNA, aminoglycoside gentamicin and other antibiotics may activate the icaADBC genes and elicit biofilm production in S. epidermidis, and likely S. aureus, as a defense mechanism

    MycoRRdb: A Database of Computationally Identified Regulatory Regions within Intergenic Sequences in Mycobacterial Genomes

    Get PDF
    The identification of regulatory regions for a gene is an important step towards deciphering the gene regulation. Regulatory regions tend to be conserved under evolution that facilitates the application of comparative genomics to identify such regions. The present study is an attempt to make use of this attribute to identify regulatory regions in the Mycobacterium species followed by the development of a database, MycoRRdb. It consist the regulatory regions identified within the intergenic distances of 25 mycobacterial species. MycoRRdb allows to retrieve the identified intergenic regulatory elements in the mycobacterial genomes. In addition to the predicted motifs, it also allows user to retrieve the Reciprocal Best BLAST Hits across the mycobacterial genomes. It is a useful resource to understand the transcriptional regulatory mechanism of mycobacterial species. This database is first of its kind which specifically addresses cis-regulatory regions and also comprehensive to the mycobacterial species. Database URL: http://mycorrdb.uohbif.in

    Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands

    Get PDF
    Ethionamide is an antituberculous drug for the treatment of multidrug-resistant Mycobacterium tuberculosis. This antibiotic requires activation by the monooxygenase EthA to exert its activity. Production of EthA is controlled by the transcriptional repressor EthR, a member of the TetR family. The sensitivity of M. tuberculosis to ethionamide can be artificially enhanced using synthetic ligands of EthR that allosterically inactivate its DNA-binding activity. Comparison of several structures of EthR co-crystallized with various ligands suggested that the structural reorganization of EthR resulting in its inactivation is controlled by a limited portion of the ligand-binding-pocket. In silico simulation predicted that mutation G106W may mimic ligands. X-ray crystallography of variant G106W indeed revealed a protein structurally similar to ligand-bound EthR. Surface plasmon resonance experiments established that this variant is unable to bind DNA, while thermal shift studies demonstrated that mutation G106W stabilizes EthR as strongly as ligands. Proton NMR of the methyl regions showed a lesser contribution of exchange broadening upon ligand binding, and the same quenched dynamics was observed in apo-variant G106W. Altogether, we here show that the area surrounding Gly106 constitutes the molecular switch involved in the conformational reorganization of EthR. These results also shed light on the mechanistic of ligand-induced allosterism controlling the DNA binding properties of TetR family repressors

    Introductory Chapter: Introduction to Chikungunya

    No full text

    Irradiation of Sewage Sludge

    No full text
    A review of the current status of sewage sludge decontamination using electron beam irradiation at industrial scale is presented. The chapter includes a historical development of the technology using both gamma and electron beam sources, a description of a facility using an electron accelerator, a discussion of the quality control techniques used to certify that satisfactory decontamination levels for safe use of treated sludge have been achieved, the effect of electron beam irradiation on the bacteria and virus present in a typical sample of municipal sewage sludge, and an analysis of the costs of decontaminating sewage sludge using electron beam irradiation compared to traditional and more routine technologies. Finally, the chapter concludes by emphasizing on the fact that electron accelerators described in this chapter are capable to decontaminate a typical municipal sewage sludge at competitive costs which are shown to be comparable and/or lower than routinely used technologies to achieve class A biosolids by the Environmental Protection Agency standards
    corecore