1,141 research outputs found

    On deconvolution problems: numerical aspects

    Get PDF
    An optimal algorithm is described for solving the deconvolution problem of the form ku:=0tk(ts)u(s)ds=f(t){\bf k}u:=\int_0^tk(t-s)u(s)ds=f(t) given the noisy data fδf_\delta, ffδδ.||f-f_\delta||\leq \delta. The idea of the method consists of the representation k=A(I+S){\bf k}=A(I+S), where SS is a compact operator, I+SI+S is injective, II is the identity operator, AA is not boundedly invertible, and an optimal regularizer is constructed for AA. The optimal regularizer is constructed using the results of the paper MR 40#5130.Comment: 7 figure

    Ions in Fluctuating Channels: Transistors Alive

    Full text link
    Ion channels are proteins with a hole down the middle embedded in cell membranes. Membranes form insulating structures and the channels through them allow and control the movement of charged particles, spherical ions, mostly Na+, K+, Ca++, and Cl-. Membranes contain hundreds or thousands of types of channels, fluctuating between open conducting, and closed insulating states. Channels control an enormous range of biological function by opening and closing in response to specific stimuli using mechanisms that are not yet understood in physical language. Open channels conduct current of charged particles following laws of Brownian movement of charged spheres rather like the laws of electrodiffusion of quasi-particles in semiconductors. Open channels select between similar ions using a combination of electrostatic and 'crowded charge' (Lennard-Jones) forces. The specific location of atoms and the exact atomic structure of the channel protein seems much less important than certain properties of the structure, namely the volume accessible to ions and the effective density of fixed and polarization charge. There is no sign of other chemical effects like delocalization of electron orbitals between ions and the channel protein. Channels play a role in biology as important as transistors in computers, and they use rather similar physics to perform part of that role. Understanding their fluctuations awaits physical insight into the source of the variance and mathematical analysis of the coupling of the fluctuations to the other components and forces of the system.Comment: Revised version of earlier submission, as invited, refereed, and published by journa

    Development of Muon Drift-Tube Detectors for High-Luminosity Upgrades of the Large Hadron Collider

    Full text link
    The muon detectors of the experiments at the Large Hadron Collider (LHC) have to cope with unprecedentedly high neutron and gamma ray background rates. In the forward regions of the muon spectrometer of the ATLAS detector, for instance, counting rates of 1.7 kHz/square cm are reached at the LHC design luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher background rates are expected which require replacement of the muon chambers in the critical detector regions. Tests at the CERN Gamma Irradiation Facility showed that drift-tube detectors with 15 mm diameter aluminum tubes operated with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns provide efficient and high-resolution muon tracking up to the highest expected rates. For 15 mm tube diameter, space charge effects deteriorating the spatial resolution at high rates are strongly suppressed. The sense wires have to be positioned in the chamber with an accuracy of better than 50 ?micons in order to achieve the desired spatial resolution of a chamber of 50 ?microns up to the highest rates. We report about the design, construction and test of prototype detectors which fulfill these requirements

    Solution to the problem of tomographic scanning of objects by small area X-Ray detectors

    Get PDF
    Standard X-Ray tomographic setups basically consist of 3 parts: radiation source, mechanics for mounting a sample and detector system. Each part of tomographic setup in one way or another contributes into the quality of reconstructed images. Detector system is responsible for data acquisition process. Development of detectors improves them in terms of resolution, acquisition speed, dark current etc. Such improvements increases costs for producing of detectors as well as their final price. Tomographic scanning of long objects requires using detectors of corresponding size. It makes tomographic setups expensive, because the price of detectors also increases with increasing of their size. Presented work proposes to solve this problem by shifting detector along the longest dimension of the sample and applying optimized filtered backprojection algorithm

    On the Calibration of a Size-Structured Population Model from Experimental Data

    Get PDF
    The aim of this work is twofold. First, we survey the techniques developed in (Perthame, Zubelli, 2007) and (Doumic, Perthame, Zubelli, 2008) to reconstruct the division (birth) rate from the cell volume distribution data in certain structured population models. Secondly, we implement such techniques on experimental cell volume distributions available in the literature so as to validate the theoretical and numerical results. As a proof of concept, we use the data reported in the classical work of Kubitschek [3] concerning Escherichia coli in vitro experiments measured by means of a Coulter transducer-multichannel analyzer system (Coulter Electronics, Inc., Hialeah, Fla, USA.) Despite the rather old measurement technology, the reconstructed division rates still display potentially useful biological features

    The density of states of chaotic Andreev billiards

    Get PDF
    Quantum cavities or dots have markedly different properties depending on whether their classical counterparts are chaotic or not. Connecting a superconductor to such a cavity leads to notable proximity effects, particularly the appearance, predicted by random matrix theory, of a hard gap in the excitation spectrum of quantum chaotic systems. Andreev billiards are interesting examples of such structures built with superconductors connected to a ballistic normal metal billiard since each time an electron hits the superconducting part it is retroreflected as a hole (and vice-versa). Using a semiclassical framework for systems with chaotic dynamics, we show how this reflection, along with the interference due to subtle correlations between the classical paths of electrons and holes inside the system, are ultimately responsible for the gap formation. The treatment can be extended to include the effects of a symmetry breaking magnetic field in the normal part of the billiard or an Andreev billiard connected to two phase shifted superconductors. Therefore we are able to see how these effects can remold and eventually suppress the gap. Furthermore the semiclassical framework is able to cover the effect of a finite Ehrenfest time which also causes the gap to shrink. However for intermediate values this leads to the appearance of a second hard gap - a clear signature of the Ehrenfest time.Comment: Refereed version. 23 pages, 19 figure

    Elastic-Net Regularization: Error estimates and Active Set Methods

    Full text link
    This paper investigates theoretical properties and efficient numerical algorithms for the so-called elastic-net regularization originating from statistics, which enforces simultaneously l^1 and l^2 regularization. The stability of the minimizer and its consistency are studied, and convergence rates for both a priori and a posteriori parameter choice rules are established. Two iterative numerical algorithms of active set type are proposed, and their convergence properties are discussed. Numerical results are presented to illustrate the features of the functional and algorithms

    Parameter identification in a semilinear hyperbolic system

    Get PDF
    We consider the identification of a nonlinear friction law in a one-dimensional damped wave equation from additional boundary measurements. Well-posedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigte the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be ill-posed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings

    Adaptive Covariance Estimation with model selection

    Get PDF
    We provide in this paper a fully adaptive penalized procedure to select a covariance among a collection of models observing i.i.d replications of the process at fixed observation points. For this we generalize previous results of Bigot and al. and propose to use a data driven penalty to obtain an oracle inequality for the estimator. We prove that this method is an extension to the matricial regression model of the work by Baraud
    corecore