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Abstract. Quantum cavities or dots have markedly different properties depending on

whether their classical counterparts are chaotic or not. Connecting a superconductor to

such a cavity leads to notable proximity effects, particularly the appearance, predicted

by random matrix theory, of a hard gap in the excitation spectrum of quantum

chaotic systems. Andreev billiards are interesting examples of such structures built

with superconductors connected to a ballistic normal metal billiard since each time

an electron hits the superconducting part it is retroreflected as a hole (and vice-

versa). Using a semiclassical framework for systems with chaotic dynamics, we show

how this reflection, along with the interference due to subtle correlations between the

classical paths of electrons and holes inside the system, are ultimately responsible

for the gap formation. The treatment can be extended to include the effects of a

symmetry breaking magnetic field in the normal part of the billiard or an Andreev

billiard connected to two phase shifted superconductors. Therefore we are able to

see how these effects can remold and eventually suppress the gap. Furthermore the

semiclassical framework is able to cover the effect of a finite Ehrenfest time which also

causes the gap to shrink. However for intermediate values this leads to the appearance

of a second hard gap - a clear signature of the Ehrenfest time.
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1. Introduction

The physics of normal metals (N) in contact with superconductors (S) has been

studied extensively for almost fifty years and in the last two decades there has been

somewhat of a resurgence of interest in this field. This has mainly been sparked by

the realisation of experiments that can directly probe the region close to the normal-

superconducting (NS) interface at temperatures far below the transition temperature of

the superconductor. Such experiments have been possible thanks to microlithographic

techniques that permit the building of heterostructures on a mesoscopic scale combined

with transport measurements in the sub-Kelvin regime. Such hybrid structures exhibit

various new phenomena, mainly due to the fact that physical properties of both the

superconductor and the mesoscopic normal metal are strongly influenced by quantum

coherence effects.
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The simplest physical picture of this system is that the superconductor tends

to export some of its anomalous properties across the interface over a temperature

dependent length scale that can be of the order of a micrometer at low temperatures.

This is the so-called proximity effect which has been the focus on numerous surveys;

both experimental [1, 2, 3, 4, 5, 6, 7, 8, 9] and theoretical [10, 11, 12, 13].

The key concept to understand this effect [14, 15, 16] is Andreev reflection. During

this process, when an electron from the vicinity of the Fermi energy (EF) surface of the

normal conductor hits the superconductor, the bulk energy gap ∆ of the superconductor

prevents the negative charge from entering, unless a Cooper pair is formed in the

superconductor. Since a Cooper pair is composed of two electrons, an extra electron

has to be taken from the Fermi sea, thus creating a hole in the conduction band of

the normal metal. Physically and classically speaking, an Andreev reflection therefore

corresponds to a retroflection of the particle, where Andreev reflected electrons (or

holes) retrace their trajectories as holes (or electrons). The effect of Andreev reflection

on the transport properties of open NS structures is an interesting and fruitful area

(see [17, 18] and references therein for example), though in this article we turn instead

to closed structures. Naturally this choice has the consequence of leaving aside some

exciting recent results like, for example, the statistical properties of the conductance [19],

the magneto-conductance in Andreev quantum dots [20], resonant tunnelling [21] and

the thermoelectrical effect [22, 23] in Andreev interferometers.

In closed systems, one of the most noticeable manifestations of the proximity effect

is the suppression of the density of states (DoS) of the normal metal just above the

Fermi energy. Although most of the experimental investigations have been carried out

on disordered systems [1, 3, 5, 6, 8], with recent technical advances interest has moved

to structures with clean ballistic dynamics [2, 4, 7, 9, 24, 25]. This shift gives access

to the experimental investigation of the so-called Andreev billiard. While this term was

originally coined [26] for an impurity-free normal conducting region entirely confined by

a superconducting boundary, it also refers to a ballistic normal area (i.e. a quantum dot)

with a boundary that is only partly connected to a superconductor. The considerable

theoretical attention raised by such a hybrid structure in the last decade is related

to the interesting peculiarity that by looking at the DoS of an Andreev billiard we can

determine the nature of the underlying dynamics of its classical counterpart [27]. Indeed,

while the DoS vanishes with a power law in energy for the integrable case, the spectrum

of a chaotic billiard is expected to exhibit a true gap above EF [27]. The width of this

hard gap, also called the minigap [13], has been calculated as a purely quantum effect

by using random matrix theory (RMT) and its value scales with the Thouless energy,

ET = ~/2τd, where τd is the average (classical) dwell time a particle stays in the billiard

between successive Andreev reflections [27].

Since the existence of this gap is expected to be related to the chaotic nature of

the electronic motion, many attempts have been undertaken to explain this result in

semiclassical terms [28, 29, 30, 31, 32, 33, 34], however this appeared to be rather

complicated. Indeed a traditional semiclassical treatment based on the so-called
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Bohr-Sommerfeld (BS) approximation yields only an exponential suppression of the

DoS [28, 29, 30]. This apparent contradiction of this prediction with the RMT one was

resolved quite early by Lodder and Nazarov [28] who pointed out the existence of two

different regimes. The characteristic time scale that governs the crossover between the

two regimes is the Ehrenfest time τE ∼ | ln~|, which is the time scale that separates the

evolution of wave packets following essentially the classical dynamics from longer time

scales dominated by wave interference. In particular it is the ratio τ = τE/τd, that has

to be considered.

In the universal regime, τ = 0, chaos sets in sufficiently rapidly and RMT is

valid leading to the appearance of the aforementioned Thouless gap [27]. Although

the Thouless energy ET is related to a purely classical quantity, namely the average

dwell time, we stress that the appearance of the minigap is a quantum mechanical

effect, and consequently the gap closes if a symmetry breaking magnetic field is applied

[35]. Similarly if two superconductors are attached to the Andreev billiard, the size of

the gap will depend on the relative phase between the two superconductors, with the

gap vanishing for a π-junction [35].

The deep classical limit is characterised by τ → ∞, and in this regime the

suppression of the DoS is exponential and well described by the Bohr-Sommerfeld

approximation. The more interesting crossover regime of finite Ehrenfest time, and

the conjectured Ehrenfest time gap dependence of [28] has been investigated by various

means [12, 36, 37, 38, 39, 21, 40]. Due to the logarithmic nature of τE, investigating

numerically the limit of large Ehrenfest time is rather difficult, but a clear signature

of the gap’s Ehrenfest time dependence has been obtained [41, 42, 43] for τ < 1.

From an analytical point of view RMT is inapplicable in the finite τE regime [12],

therefore new methods such as a stochastic method [38] using smooth disorder and

sophisticated perturbation methods that include diffraction effects [36] have been used

to tackle this problem. On the other hand a purely phenomenological model, effective

RMT, has been developed [37, 44] and predicts a gap size scaling with the Ehrenfest

energy EE = ~/2τE. Recently Micklitz and Altland [40], based on a refinement of the

quasiclassical approach and the Eilenberger equation, succeeded to show the existence

of a gap of width πEE ∝ 1/τ in the limit of large τ≫1.

Consequently a complete picture of all the available regimes was still missing

until recently when we treated the DoS semiclassically [45] following the scattering

approach [46]. Starting for τ = 0 and going beyond the diagonal approximation we used

an energy-dependent generalisation of the work [47] on the moments of the transmission

eigenvalues. The calculation is based on the evaluation of correlation functions also

appearing in the moments of the Wigner delay times [48]. More importantly the

effect of finite Ehrenfest time could be incorporated in this framework [49] leading to a

microscopic confirmation of the τE dependence of the gap predicted by effective RMT.

Interestingly the transition between τ = 0 and τ = ∞ is not smooth and a second gap

at πEE was observed for intermediate τ , providing us with certainly the most clear-cut

signature of Ehrenfest time effects.
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Figure 1. (a) The Andreev billiard consists of a chaotic normal metal (N) cavity

attached to a superconductor (S) via a lead. (b) At the NS interface between the

normal metal and the superconductor electrons are retroreflected as holes.

In this article we extend and detail the results obtained in [45]. First we discuss

Andreev billiards and their treatment using RMT and semiclassical techniques. For the

DoS in the universal regime (τ = 0) we first delve into the work of [47, 48] before using

it to obtain the generating function of the correlation functions which are employed to

derive the DoS. This is done both in absence and in presence of a time reversal symmetry

breaking magnetic field, and we also look at the case when the bulk superconducting

gap and the excitation energy of the particle are comparable.

We then treat Andreev billiards connected to two superconducting contacts with a

phase difference φ. The gap is shown to shrink with increasing phase difference due to the

the accumulation of a phase along the trajectories that connect the two superconductors.

Finally the Ehrenfest regime will be discussed, especially the appearance of a second

intermediate gap for a certain range of τ . We will also show that this intermediate gap

is very sensitive to the phase difference between the superconductors.

2. Andreev billiards

Since the treatment of Andreev billiards was recently reviewed in [13] we just recall some

useful details here. In particular the chaotic Andreev billiard that we consider is treated

within the scattering approach [46] where the NS interface is modelled with the help of

a fictitious ideal lead. This lead permits the contact between the normal metal cavity

(with chaotic classical dynamics) and the semi-infinite superconductor as depicted in

figure 1a. Using the continuity of the superconducting and normal wave function we can

construct the scattering matrix of the whole system. Denoting the excitation energy

of the electron above the Fermi energy EF by E and assuming that the lead supports

N channels (transverse modes at the Fermi energy), the scattering matrix of the whole
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normal region can be written in a joint electron-hole basis and reads

SN(E) =

(

S(E) 0

0 S∗(−E)

)

, (1)

where S(E) is the unitary N × N scattering matrix of the electrons (and its complex

conjugate S∗(−E) that of the holes). As the electrons and holes remain uncoupled in the

normal region the off-diagonal blocks are zero. Instead, electrons and holes couple at the

NS interface through Andreev reflection [15] where electrons are retroreflected as holes

and vice-versa, as in figure 1b. For energies E smaller than the bulk superconductor

gap ∆ there is no propagation into the superconductor and if we additionally assume

∆ ≪ EF we can encode the Andreev reflection in the matrix

SA(E) = α(E)

(

0 1

1 0

)

, (2)

α(E) = e−i arccos(E
∆) =

E

∆
− i

√

1− E2

∆2
. (3)

The retroreflection (of electrons as holes with the same channel index) is accompanied

by the phase shift arccos (E/∆). In the limit of perfect Andreev reflection (E = 0) this

phase shift reduces to π/2.

Below ∆ the Andreev billiard has a discrete excitation spectrum at energies where

det [1− SA(E)SN(E)] = 0, which can be simplified [46] to

det
[

1− α2(E)S(E)S∗(−E)
]

= 0. (4)

Finding the roots of this equation yields the typical density of states of chaotic Andreev

billiards. In the next two sections we review the two main analytical frameworks that

can be used to tackle this problem.

2.1. Random matrix theory

One powerful treatment uses random matrix theory. Such an approach was initially

considered in [27, 35] where the actual setup treated is depicted in figure 2a. It consists of

a normal metal (N) connected to two superconductors (S1, S2) by narrow leads carrying

N1 and N2 channels. The superconductors’ order parameters are considered to have

phases ±φ/2, with a total phase difference φ. Moreover a perpendicular magnetic field

B was applied to the normal part. We note that although this figure (and figure 1a)

have spatial symmetry the treatment is actually for the case without such symmetry.

As above, the limit ∆ ≪ EF was taken so that normal reflection at the NS interface

can be neglected and the symmetric case where both leads contain the same number,

N/2, of channels was considered [27, 35]. Finally it was also assumed that α ≈ −i,

valid in the limit E,ET ≪ ∆ ≪ EF. For such a setup, the determinantal equation (4)

becomes

det
[

1 + S(E)eiφ̃S∗(−E)e−iφ̃
]

= 0, (5)
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(a)

S1

+
φ

2
N1

N S2

−
φ

2
N2

⊗

B

(b)

S1

S2

Figure 2. (a) An Andreev billiard connected to two superconductors (S1, S2) at phases

±φ/2 via leads carrying N1 and N2 channels, all threaded by a perpendicular magnetic

field B. (b) The semiclassical treatment involves classical trajectories retroreflected at

the superconductors an arbitrary number of times.

where φ̃ is a diagonal matrix whose first N/2 elements are φ/2 and the remaining N/2

elements −φ/2. We note that though we stick to the case of perfect coupling here, the

effect of tunnel barriers was also included in [27].

The first step is to rewrite the scattering problem in terms of a low energy effective

Hamiltonian H

H =

(

Ĥ πXXT

−πXXT −Ĥ∗

)

, (6)

where Ĥ is the M ×M Hamiltonian of the isolated billiard and X an M ×N coupling

matrix. Eventually the limit M → ∞ is taken and to mimic a chaotic system the matrix

Ĥ is replaced by a random matrix following the Pandey-Mehta distribution [17]

P (H) ∝ exp

(

−N2 (1 + a2)

64ME2
T

M
∑

i,j=1

[

(

ReĤij

)2

+ a−2
(

ImĤij

)2
]

)

. (7)

The parameter a measures the strength of the time-reversal symmetry breaking so we

can investigate the crossover from the ensemble with time reversal symmetry (GOE) to

that without (GUE). It is related to the magnetic flux Φ through the two-dimensional

billiard of area A and with Fermi velocity vF by

Ma2 = c

(

eΦ

h

)2

~vF
N

2πET

√
A
. (8)

Here c is a numerical constant of order unity depending only on the shape of the billiard.

The critical flux is then defined via

Ma2 =
N

8

(

Φ

Φc

)2

⇔ Φc ≈
h

e

(

2πET

~vF

)
1
2

A
1
4 . (9)

The density of states, divided for convenience by twice the mean density of states

of the isolated billiard, can be written as

d(ǫ) = −ImW (ǫ), (10)
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where W (ǫ) is the trace of a block of the Green function of the effective Hamiltonian

of the scattering system and for simplicity here we express the energy in units of the

Thouless energy ǫ = E/ET. This is averaged by integrating over (7) using diagrammatic

methods [50], which to leading order in inverse channel number 1/N leads to the

expression [35]

W (ǫ) =

(

b

2
W (ǫ)− ǫ

2

)

(

1 +W 2(ǫ) +

√

1 +W 2(ǫ)

β

)

, (11)

where β = cos (φ/2) and b = (Φ/Φc)
2 with the critical magnetic flux Φc for which the

gap in the density of states closes (at φ = 0). Equation (11) may also be rewritten as

a sixth order polynomial and when substituting into (10), we should take the solution

that tends to 1 for large energies. In particular, when there is no phase difference

between the two leads (φ = 0, or equivalently when we consider a single lead carrying N

channels) and no magnetic field in the cavity (Φ/Φc = 0) the density of states is given

by a solution of the cubic equation

ǫ2W 3(ǫ) + 4ǫW 2(ǫ) + (4 + ǫ2)W (ǫ) + 4ǫ = 0. (12)

2.2. Semiclassical approach

The second approach, and that which we pursue and detail in this article, is to use

the semiclassical approximation to the scattering matrix which involves the classical

trajectories that enter and leave the cavity [51]. Using the general expression between

the density of states and the scattering matrix [52], the density of states of an Andreev

billiard reads [46, 53, 30]

d̃(E) = d̄− 1

π
Im

∂

∂E
ln det [1− SA(E)SN(E)] , (13)

where d̄ = N/2πET is twice the mean density of states of the isolated billiard (around

the Fermi energy). Equation (13) should be understood as an averaged quantity over a

small range of the Fermi energy or slight variations of the billiard and for convergence

reasons a small imaginary part is included in the energy E. In the limit of perfect

Andreev reflection α(E) ≈ −i, see (3), and (13) reduces to

d̃(E) = d̄+
1

π
Im

∂

∂E
Tr

∞
∑

m=1

1

m

(

0 iS∗(−E)

iS(E) 0

)m

. (14)

Obviously only even terms in the sum have a non-zero trace, and setting n = 2m,

dividing through by d̄ and expressing the energy in units of the Thouless energy

ǫ = E/ET, this simplifies to [30]

d(ǫ) = 1 + 2Im
∞
∑

n=1

(−1)n

n

∂C(ǫ, n)

∂ǫ
. (15)

Equation (15) involves the correlation functions of n scattering matrices

C(ǫ, n) =
1

N
Tr

[

S∗
(

− ǫ~

2τd

)

S

(

ǫ~

2τd

)]n

, (16)
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where we recall that the energy is measured relative to the Fermi energy and that

ET = ~/2τd involves the average dwell time τd. For chaotic systems [54] the dwell time

can be expressed as τd = TH/N in terms of the Heisenberg time TH conjugate to the

mean level spacing (2/d̄).

At this point it is important to observe that nonzero values of ǫ are necessary for

the convergence of the expansion of the logarithm in (13) that led to (15). On the other

hand, we are particularly interested in small values of ǫ which puts (15) on the edge of

the radius of convergence, where is it highly oscillatory. The oscillatory behaviour and

a slow decay in n is a direct consequence of the unitarity of the scattering matrix at

ǫ = 0 (in fact later it can also be shown that ∂C(ǫ,n)
∂ǫ

|ǫ=0 = in). Thus a truncation of (15)

will differ markedly from the predicted RMT gap, which was the root of the difficulty of

capturing the gap by previous semiclassical treatments [30, 33, 34]. In the present work

we succeed in evaluating the entire sum and hence obtain results which are uniformly

valid for all values of ǫ.

Calculating the density of states is then reduced to the seemingly more complicated

task of evaluating correlation functions semiclassically for all n. Luckily the treatment

of such functions has advanced rapidly in the last few years [55, 56, 57, 47, 48] and we

build on that solid basis. We also note that determining C(ǫ, n) is a more general task

than calculating the density of states. Since the Andreev reflection has already been

encoded in the formalism before (15), the treatment of the C(ǫ, n) no longer depends

on the presence or absence of the superconducting material but solely on the properties

of the chaotic dynamics inside the normal metal billiard.

In the semiclassical approximation, the elements of the scattering matrix are given

by [51]

Soi(E) ≈ 1√
TH

∑

ζ(i→o)

Aζe
iSζ(E)/~, (17)

where the sum runs over all classical trajectories ζ starting in channel i and ending

in channel o. Sζ(E) is the classical action of the trajectory ζ at energy E above the

Fermi energy and the amplitude Aζ contains the stability of the trajectory as well as the

Maslov phases [58]. After we substitute (17) into (16) and expand the action around

the Fermi energy up to first order in ǫ using ∂Sζ/∂E = Tζ where Tζ is the duration of

the trajectory ζ , the correlation functions are given semiclassically by a sum over 2n

trajectories

C(ǫ, n) ≈ 1

NT n
H

n
∏

j=1

∑

ij ,oj

∑

ζj(ij→oj)
ζ′j(oj→ij+1)

AζjA
∗
ζ′j
exp

(

i

~
(Sζj − Sζ′j

)

)

exp

(

iǫ

2τD
(Tζj + Tζ′j

)

)

. (18)

The final trace in (16) means that we identify in+1 = i1 and as the electron trajectories

ζj start at channel ij and end in channel oj while the primed hole trajectories ζ ′j go

backwards starting in channel oj and ending in channel ij+1 the trajectories fulfil a

complete cycle, as in figures 3a and 4a,d,g. The channels i1, . . . , in will be referred to as

incoming channels, while o1, . . . , on will be called outgoing channels. This refers to the
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(a) (b) (c) (d)

Figure 3. (a) The original trajectory structure of the correlation function C(ǫ, 2)

where the incoming channels are drawn on the left, outgoing channels on the right,

electrons as solid (blue) and holes as dashed (green) lines. (b) By collapsing the

electron trajectories directly onto the hole trajectories we create a structure where

the trajectories only differ in a small region called an encounter. Placed inside the

Andreev billiard this diagram corresponds to figure 2b. The encounter can be slid into

the incoming channels on the left (c) or the outgoing channels on the right (d) to create

diagonal-type pairs.

direction of the electron trajectories at the channels and not necessarily to which lead

the channel finds itself in (when we have two leads as in figure 2).

The actions in (18) are taken at the Fermi energy and the resulting phase is given

by the difference of the sum of the actions of the unprimed trajectories and the sum of

the actions of the primed ones. In the semiclassical limit of ~ → 0 (c.f. the RMT limit

of M → ∞) this phase oscillates widely leading to cancellations when the averaging

is applied, unless this total action difference is of the order of ~. The semiclassical

treatment then involves finding sets of classical trajectories that can have such a small

action difference and hence contribute consistently in the limit ~ → 0.

3. Semiclassical diagrams

As an example we show the original trajectory structure for n = 2 in figure 3a, where

for convenience we draw the incoming channels on the left and the outgoing channels

on the right so that electrons travel to the right and holes to the left (c.f. the shot noise

in [59, 60, 61]). Of course the channels are really in the lead (figure 1a) or either lead

(figure 2) and the trajectory stretches involve many bounces at the normal boundary

of the cavity. We draw such topological sketches as the semiclassical methods were

first developed for transport [55, 57, 47] where typically we have S† (complex conjugate

transpose) instead of S∗ (complex conjugate) in (16), restricted to the transmission

subblocks, so that all the trajectories would travel to the right in our sketches. Without

the magnetic field, the billiard has time reversal symmetry and S is symmetric, but

this difference plays a role when we turn the magnetic field on later. An even more

important difference is that in our problem any channel can be in any lead.

To obtain a small action difference, and a possible contribution in the semiclassical

limit, the trajectories must be almost identical. This can be achieved for example by

collapsing the electron trajectories directly onto the hole trajectories as in figure 3b.

Inside the open circle, the holes still ‘cross’ while the electrons ‘avoid crossing’, but by

bringing the electron trajectories arbitrarily close together the set of trajectories can

have an arbitrary small action difference. More accurately, the existence of partner
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trajectories follows from the hyperbolicity of the phase space dynamics. Namely, given

two electron trajectories that come close (have an encounter) in the phase space, one

uses the local stable and unstable manifolds [62, 63, 64] to find the coordinates through

which hole trajectories arrive along one electron trajectory and leave along the other,

exactly as in figure 3b (and figure 2b). These are the partner trajectories we pick for ζ ′1
and ζ ′2 when we evaluate C(ǫ, 2) from (18) in the semiclassical approximation. As the

encounter involves two electron trajectories it is called a 2-encounter. An encounter can

happen anywhere along the length of a trajectory, in particular, it can happen at the

very beginning or the very end of a trajectory, in which case it is actually happening next

to the lead, see figures 3c,d. This situation is important as it will give a contribution

additional to that of an encounter happening in the body of the billiard. We will refer

to this situation as an ‘encounter entering the lead’. We note that if an encounter enters

the lead the corresponding channels must coincide and we have diagonal-type pairs (i.e.

the trajectories are coupled exactly pairwise) though it is worth bearing in mind that

there is still a partial encounter happening near the lead as shown by the Ehrenfest time

treatment [60, 65].

To give a more representative example, consider the structure of trajectories for

n = 4. For visualisation purposes in figure 4a the original trajectories are arranged

around a cylinder in the form of a cat’s cradle. The incoming and outgoing channels

are ordered around the circles at either end though they could physically be anywhere.

Projecting the structure into 2D we can draw it in several equivalent ways, for example as

figure 4d or 4g, and we must take care not to overcount such equivalent representations.

We note that the ordering of the channels is uniquely defined by the closed cycle the

trajectories form. To create a small action difference, we can imagine pinching together

the electron (and hole) strings in figure 4a. One possibility is to pinch two together in

three places (making three 2-encounters) as in figure 4b. A possible representation in 2D

is shown in figure 4e, which can also be created by collapsing the electron trajectories

directly onto the hole trajectories in figure 4g. Note that the collapse of the diagram in

figure 4d leads to a different structure with three 2-encounters. However in general it is

not true that the different projections of the arrangement in figure 4a are in a one-to-one

correspondence with all possible diagrams.

From figures 4b,e we can create another possibility by sliding two of the 2-encounters

together to make a 3-encounter (or alternatively we could start by pinching 3 trajectories

together in figure 4a as well as an additional pair) as in figure 4c,f. Finally we

could combine both to a single 4-encounter. Along with the possibilities where all the

encounters are inside the system, we can progressively slide encounters into the leads, as

we did for the n = 2 case in figure 3, creating, among others, the diagrams in figure 5.

Finally, we mention that so far we were listing only ‘minimal’ diagrams. One can

add more encounters to the above diagrams but we will see later that such arrangements

contribute at a higher order in the inverse number of channels and are therefore

subdominant. The complete expansion in this small parameter is available only for

small values of n [56, 59, 57].
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(f)
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(h)
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o2

i3
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Figure 4. (a) The original trajectory structure of the correlation function C(ǫ, 4)

where the incoming channels are drawn on the left, outgoing channels on the right,

electrons as solid (blue) and holes as dashed (green) lines. (d,g) Equivalent 2D

projections of the starting structure as the order is determined by moving along the

closed cycle of electron and hole trajectories. (b) By pinching together the electron

trajectories (pairwise here) we can create a structure which only differs in three small

regions (encounters) and which can have a small action difference. (e) Projection

of (b) also created by collapsing the electron trajectories in (g) directly onto the hole

trajectories. (c,f) Sliding two of the encounters from (b) together (or originally pinching

3 electron trajectories together) creates these diagrams. (h,i) Resulting rooted plane

tree diagrams of (e,f) or (b,c) defining the top left as the first incoming channel (i.e.

the channel ordering as depicted in (e,f)).

3.1. Tree recursions

To summarise the previous paragraph, the key task now is to generate all possible

minimal encounter arrangements (see, for example, [48] for the complete list of those

with n = 3). This is a question that was answered in [47] where the moments of the

transmission amplitudes were considered. The pivotal step was to redraw the diagrams

as rooted plane trees and to show that there is a one-to-one relation between them (for

the diagrams that contribute at leading order in inverse channel number). To redraw

a diagram as a tree we start with a particular incoming channel i1 as the root (hence

rooted trees) and place the remaining channels in order around an anticlockwise loop

(hence plane). Moving along the trajectory ζ1 we draw each stretch as a link and each
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(a) (b) (c)

(d) (e) (f)

Figure 5. Further possibilities arise from moving encounters into the lead(s). Starting

from figure 4c we can slide the 2-encounter into the outgoing channels on the right

(called ‘o-touching’, see text) to arrive at (a,d) or the 3-encounter into the incoming

channels on the left (called ‘i-touching’) to obtain (b,e). Moving both encounters leads

to (c,f), but moving both to the same side means first combining the 3- and 2-encounter

in figure 4c into a 4-encounter and is treated as such.

encounter as a node (open circle) until we reach o1. Then we move along ζ ′1 back to its

first encounter and continue along any new encounters to i2 and so on. For example,

the tree corresponding to figures 4b,e is drawn in figure 4h and that corresponding

to figures 4c,f is in figure 4i. Note that marking the root only serves to eliminate

overcounting and the final results do not depend on the particular choice of the root.

A particularly important property of the trees is their amenability to recursive

counting. The recursions behind our treatment of Andreev billiards were derived in

[47] and we recall the main details here. First we can describe the encounters in a

particular tree by a vector v whose elements vl count the number of l-encounters in the

tree (or diagram); this is often written as 2v23v3 · · ·. An l-encounter is a vertex in the

tree of degree 2l (i.e. connected to 2l links). The vertices of the tree that correspond to

encounters will be called ‘nodes’, to distinguish them from the vertices of degree 1 which

correspond to the incoming and outgoing channels and which will be called ‘leaves’. The

total number of nodes is V =
∑

l>1 vl and the number of leaves is 2n where n is the order

of the correlation function C(ǫ, n) to which the trees contribute. Defining L =
∑

l>1 lvl,

we can express n as n = (L − V + 1). Note that the total number of links is L + n

which can be seen as l links trailing each l-encounter plus another n from the incoming

channels. For example, the 2131 tree in figure 4i has L = 5, V = 2 and contributes

to the n = 4 correlation function. We always draw the tree with the leaves ordered

i1, o1, . . . , in, on in anticlockwise direction. This fixes the layout of the tree in the plane,

thus the name ‘rooted plane trees’ [66].

From the start tree, we can also move some encounters into the lead(s) and it is

easy to read off when this is possible. If an l-encounter (node of degree 2l) is adjacent
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(e)
o6

i7

o8

i8

(f)
i8

o8

i9

o9

Figure 6. The tree shown in (a) is cut at its top node (of degree 6) such that the

trees (b)-(f) are created. Note that to complete the five new trees we need to add an

additional four new links and leaves and that the trees (c) and (e) in the even positions

have the incoming and outgoing channels reversed.

to exactly l leaves with label i it may ‘i-touch’ the lead, i.e. the electron trajectories

have an encounter upon entering the system and the corresponding incoming channels

coincide. Likewise if a 2l-node is adjacent to l o-leaves it may ‘o-touch’ the lead. For

example, in figure 4i the top node has degree 6, is adjacent to 3 i-leaves (including the

root) and can i-touch the lead as in figures 5b,e. The lower encounter can o-touch as in

figures 5a,d. In addition, both encounters can touch the lead to create figures 5c,f.

Semiclassically, we add the contributions of all the possible trajectory structures

(or trees) and the contribution of each is made up by multiplying the contributions

of its constituent parts (links, encounters and leaves). First we count the orders of the

number of channels N . As mentioned in [47] (see also section 4 below) the multiplicative

contribution of each encounter or leaf is of order N and each link gives a contribution of

order 1/N . Together with the overall factor of 1/N , see equation (16), the total power

of 1/N is γ, the cyclicity of the diagram. Since our diagrams must be connected, the

smallest cyclicity is γ = 0 if the diagram is a tree. The trees can be generated recursively,

since by cutting a tree at the top node of degree 2l (after the root) we obtain 2l − 1

subtrees, as illustrated in figure 6. To track the trees and their nodes, the generating

function F (x, zi, zo) was introduced [47] where the powers of

• xl enumerate the number of l-encounters,

• zi,l enumerate the number of l-encounters that i-touch the lead,

• zo,l enumerate the number of l-encounters that o-touch the lead.
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Later we will assign values to these variables which will produce the correct semiclassical

contributions of the trees. Note that the contributions of the links and leaves will be

absorbed into the contributions of the nodes hence we do not directly enumerate the

links in the generating function F . Inside F we want to add all the possible trees and for

each have a multiplicative contribution of its nodes. For example, the tree in figure 4i

and its relatives in figure 5 would contribute

x3x2 + zi,3x2 + x3zo,2 + zi,3zo,2 = (x3 + zi,3) (x2 + zo,2) . (19)

A technical difficulty is that the top node may (if there are no further nodes) be able

to both i-touch and o-touch, but clearly not at the same time. An auxiliary generating

function f = f(x, zi, zo) is thus introduced with the restriction that the top node is not

allowed to i-touch the lead. An empty tree is assigned the value 1 (i.e. f(0) = 1) to not

affect the multiplicative factors. To obtain a recursion for f we separate the tree into its

top node of degree 2l and 2l−1 subtrees as in figure 6. As can be seen from the figure, l

of the new trees (in the odd positions from left to right) start with an incoming channel,

while the remaining l − 1 even numbered subtrees start with an outgoing channel, and

correspond to a tree with the i’s and o’s are reversed. For these we use the generating

function f̂ where the roles of the z variables corresponding to leaves of one type are

switched so f̂ = f(x, zo, zi). The tree then has the contribution of the top node times

that of all the subtrees giving xlf
lf̂ l−1.

The top node may also o-touch the lead, but for this to happen all the odd-numbered

subtrees must be empty. When this happens we just get the contribution of zo,l times

that of the l − 1 even subtrees: zo,lf̂
l−1. In total we have

f = 1 +

∞
∑

l=2

[

xlf
lf̂ l−1 + zo,lf̂

l−1
]

, (20)

and similarly

f̂ = 1 +
∞
∑

l=2

[

xlf̂
lf l−1 + zi,lf

l−1
]

. (21)

For F we then reallow the top node to i-touch the lead which means that the even

subtrees must be empty and a contribution of zi,lf
l, giving

F = f +

∞
∑

l=2

zi,lf
l =

∞
∑

l=1

zi,lf
l, (22)

if we let zi,1 = 1 (and also zo,1 = 1 for symmetry). Picking an o-leaf as the root instead

of an i-leaf should lead to the same trees and contributions so F should be symmetric

upon swapping zi with zo and f with f̂ . These recursions enumerate all possible trees

(which represent all diagrams at leading order in inverse channel number) and we now

turn to evaluating their contributions to the correlation functions C(ǫ, n).
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4. Density of states with a single lead

To calculate the contribution of each diagram, [55, 56, 57] used the ergodicity of the

classical motion to estimate how often the electron trajectories are likely to approach

each other and have encounters. Combined with the sum rule [67, 55] to deal with

the stability amplitudes, [56] showed that the semiclassical contribution can be written

as a product of integrals over the durations of the links and the stable and unstable

separations of the stretches in each encounter. One ingredient is the survival probability

that the electron trajectories remain inside the system (these are followed by the holes

whose conditional survival probability is then 1) which classically decays exponentially

with their length and the decay rate 1/τd = N/TH. A small but important effect is that

the small size of the encounters means the trajectories are close enough to remain inside

the system or escape (hit the lead) together so only one traversal of each encounter

needs to be counted in the total survival probability

exp

(

− N

TH
tx

)

, tx =

L+n
∑

i=1

ti +

V
∑

α=1

tα, (23)

where the ti are the durations of the (n+L) link stretches and tα the durations of the V

encounters so that the exposure time tx is shorter than the total trajectory time (which

includes l copies of each l-encounter).

As reviewed in [57] the integrals over the links and the encounters (with their action

differences) lead to simple diagrammatic rules whereby

• each link provides a factor of TH/ [N (1− iǫ)] ,

• each l-encounter inside the cavity provides a factor of −N (1− ilǫ) /T l
H ,

with the (1− ilǫ) deriving from the difference between the exposure time and the total

trajectory time. Recalling the prefactor in (18) and that L is the total number of links

in the encounters, it is clear that all the Heisenberg times cancel. The channel number

factor N−2n from these rules and the prefactor (with n = L − V + 1) cancels with the

sum over the channels in (18) as each of the 2n channels can be chosen from the N

possible (to leading order).

With this simplification, each link gives (1− iǫ)−1, each encounter − (1− ilǫ) and

each leaf a factor of 1. To absorb the link contributions into those of the encounters

(nodes) we recall that the number of links is n+
∑V

α=1 lα, where α labels the V different

encounters. Therefore the total contribution factorizes as

1

(1− iǫ)n

V
∏

α=1

− (1− ilαǫ)

(1− iǫ)lα
. (24)

Moving an l-encounter into the lead, as in figure 5 means losing that encounter, l links

and combining l channels so we just remove that encounter from the product above (or

give it a factor 1 instead).
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4.1. Generating function

Putting these diagrammatic rules into the recursions in section 3.1 then simply means

setting

xl =
− (1− ilǫ)

(1− iǫ)l
· r̃l−1, zi,l = zo,l = 1 · r̃l−1, (25)

where we additionally include powers of r̃ to track the order of the trees and later

generate the semiclassical correlation functions. The total power of r̃ of any tree is
∑

l>1(l − 1)vl = L − V = n − 1. To get the required prefactor of (1− iǫ)−n in (24) we

can then make the change of variable

f = g(1− iǫ), r̃ =
r

1− iǫ
, (26)

so that the recursion relation (20) becomes

g(1− iǫ) = 1−
∞
∑

l=2

rl−1glĝl−1(1− ilǫ) +

∞
∑

l=2

rl−1ĝl−1, (27)

and similarly for ĝ. Using geometric sums (the first two terms are the l = 1 terms of

the sums) this is

g

1− rgĝ
=

iǫg

(1− rgĝ)2
+

1

1− rĝ
. (28)

We note that the since f̂ is obtained from f by swapping zi and zo and in our

substitution (25) zi = zo, the functions f̂ and f are equal. Taking the numerator

of the equation above and substituting ĝ = g leads to

g − 1

1− iǫ
=

rg2

1− iǫ
[g − 1− iǫ] . (29)

To obtain the desired generating function of the semiclassical correlation functions

we set F = G (1− iǫ) in (22), along with the other substitutions in (25) and (26),

G(ǫ, r) =
g

1− rg
, G(ǫ, r) =

∞
∑

n=1

rn−1C(ǫ, n), (30)

so that by expanding g and hence G in powers of r we obtain all the correlation functions

C(ǫ, n). This can be simplified by rearranging (30) and substituting into (29) to get the

cubic for G directly

r(r − 1)2G3 + r(3r + iǫ− 3)G2 + (3r + iǫ− 1)G+ 1 = 0. (31)

4.2. Density of states

The density of states of a chaotic Andreev billiard with one superconducting lead (15)

can be rewritten as

d(ǫ) = 1− 2Im
∂

∂ǫ

∞
∑

n=1

(−1)n−1C(ǫ, n)

n
, (32)
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where without the 1/n the sum would just be G(ǫ,−1) in view of (30). To obtain the

1/n we can formally integrate to obtain a new generating function H(ǫ, r),

H(ǫ, r) =
1

ir

∂

∂ǫ

∫

G(ǫ, r)dr, H(ǫ, r) =
∞
∑

n=1

rn−1

in

∂C(ǫ, n)

∂ǫ
, (33)

so the density of states is given simply by

d(ǫ) = 1− 2ReH(ǫ,−1). (34)

To evaluate the sum in (32) we now need to integrate the solutions of (31) with respect

to r and differentiate with respect to ǫ. Since G is an algebraic generating function, i.e.

the solution of an algebraic equation, the derivative of G with respect to ǫ is also an

algebraic generating function [68]. However, this is not generally true for integration,

which can be seen from a simple example of f = 1/x, which is a root of an algebraic

equation, unlike the integral of f . Solving equation (31) explicitly and integrating the

result is also technically challenging, due to the complicated structure of the solutions

of the cubic equations. Even if it were possible, this approach would fail in the presence

of magnetic field, when G is a solution of a quintic equation, see section 4.4, or in the

presence of a phase difference between two superconductors.

The approach we took is to conjecture thatH(ǫ, r) is given by an algebraic equation,

perform a computer-aided search over equations with polynomial coefficients and then

prove the answer by differentiating appropriately. We found that

(ǫr)2(1− r)H3 + iǫr[r(iǫ− 2) + 2(1− iǫ)]H2 + [r(1− 2iǫ)− (1− iǫ)2]H + 1 = 0, (35)

when expanded in powers of r, agrees for a range of values of n with the expansion of

(33) derived from the correlation functions obtained from (31). In order to show that

(35) agrees with (33) to all orders in r we use a differentiation algorithm to find an

equation for the intermediate generating function

I(ǫ, r) =
1

i

∂G(ǫ, r)

∂ǫ
=

∂[rH(ǫ, r)]

∂r
, I(ǫ, r) =

∞
∑

n=1

rn−1

i

∂C(ǫ, n)

∂ǫ
, (36)

both starting from (31) and from (35) and verifying that the two answers agree.

The differentiation algorithm starts with the algebraic equation for a formal power

series η in the variable x which satisfies an equation of the form

Φ(x, η) := p0(x) + p1(x)η + . . .+ pm(x)η
m = 0, (37)

where p0(x), . . . , pm(x) are some polynomials, not all of them zero. The aim is to find

an equation satisfied by ξ = dη/dx, of the form

q0(x) + q1(x)ξ + . . .+ qm(x)ξ
m = 0, (38)

where q0(x), . . . , qm(x) are polynomials. Differentiating (37) implicitly yields

ξ = −∂Φ(x, η)

∂x

(

∂Φ(x, η)

∂η

)−1

=
P (η, x)

Q(η, x)
, (39)
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(a) (b)

Figure 7. (a) The density of states of a chaotic quantum dot coupled to a single

superconductor at E ≪ ∆. (b) The density of states with a finite bulk superconducting

gap ∆ = 2ET (dashed line) and ∆ = 8ET (solid line) compared to the previous case

in (a) with ∆ → ∞ (dotted line).

where P and Q are again polynomial. After substituting this expression into the

algebraic equation for ξ and bringing everything to the common denominator we get

q0(x)Q
m(x, η) + q1(x)P (x, η)Qm−1(x, η) + . . .+ qm(x)P

m(x, η) = 0. (40)

However, this equation should only be satisfied modulo the polynomial Φ(x, η). Namely,

we use polynomial division and substitute P j(x, η)Qm−j(x, η) = T (x, η)Φ(x, η)+Rj(x, η)

into (40). Using (37) we arrive at

q0(x)R0(x, η) + q1(x)R1(x, η) + . . .+ qm(x)Rm(x, η) = 0. (41)

The polynomials Rj are of degree of m−1 in η. Treating (41) as an identity with respect

to η we thus obtain m linear equations on the coefficients qj . Solving those we obtain

qj as rational functions of x and multiplying them by their common denominator gives

the algebraic equation for ξ.

Performing this algorithm on G from (31), with x = iǫ, and on rH from (35), with

x = r, leads to the same equation, given as (A.1) in Appendix A, for the intermediate

function defined in (36) and therefore proves the validity of the equation (35). Setting

ǫ = 0 in (35) then shows that ∂C(ǫ,n)
∂ǫ

|ǫ=0 = in as mentioned in section 2.2. To compare the

final result (34) with the RMT prediction we can substitute H(ǫ,−1) = [−iW (ǫ) + 1] /2

into (35). The density of states is then given in terms of W as d(ǫ) = −ImW (ǫ). The

equation for W simplifies to the RMT result (12), and the density of states then reads

[27]

d(ǫ) =











0 ǫ ≤ 2
(√

5−1
2

)5/2

√
3

6ǫ
[Q+(ǫ)−Q−(ǫ)] ǫ > 2

(√
5−1
2

)5/2 , (42)

where Q±(ǫ) =
(

8− 36ǫ2 ± 3ǫ
√
3ǫ4 + 132ǫ2 − 48

)1/3
. This result is plotted in figure 7a

and shows the hard gap extending up to around 0.6ET.
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4.3. Small bulk superconducting gap

The calculation of the density of states above used the approximation that the energy

was well below the bulk superconductor gap, E ≪ ∆ or ǫ ≪ δ (for δ = ∆/ET), so that

the phase shift at each Andreev reflection was arccos(ǫ/δ) ≈ π/2. For higher energies

or smaller superconducting gaps, however, the density of states should be modified [69]

to

d(ǫ) = 1 + Re
2√

δ2 − ǫ2
+ 2Im

∞
∑

n=1

∂

∂ǫ

[

α(ǫ)2nC(ǫ, n)

n

]

, (43)

where α(ǫ) = δ/(ǫ+ i
√
δ2 − ǫ2) as in (3). When taking the energy derivative in the sum

in (43) we can split the result into two sums and hence two contributions to the density

of states

d(ǫ) = 1 + 2Im

∞
∑

n=1

α(ǫ)2n

n

∂C(ǫ, n)

∂ǫ
+ Re

2√
δ2 − ǫ2

[

1 + 2

∞
∑

n=1

α(ǫ)2nC(ǫ, n)

n

]

. (44)

Here the first term, which comes from applying the energy derivative to C(ǫ, n), gives an

analogous contribution to the case E ≪ ∆ but with r = α2 instead of −1 and involving

H(ǫ, α2) from (33) and (35). The second term in (44) comes from the energy derivative

of α2n and can be written using G(ǫ, α2) from (30) and (31):

d(ǫ) = Re
[

1 + 2α2H(ǫ, α2)
]

+ Re
2√

δ2 − ǫ2

[

1 + 2α2G(ǫ, α2)
]

. (45)

The effect of a finite bulk superconducting gap on the hard gap in the density of

states of the Andreev billiard is fairly small, for example as shown in figure 7b even

for δ = ∆/ET = 2 the width just shrinks to around 0.5ET. For δ = 2 the shape of the

density of states is changed somewhat (less so for δ = 8) and we can see just before ǫ = 2

it vanishes again giving a second thin gap. This gap, and even the way we can separate

the density of states into the two terms in (45), foreshadows the effects of the Ehrenfest

time (in section 6). For energies above the bulk superconducting gap (ǫ > δ) we see a

thin singular peak from the
√
δ2 − ǫ2 which quickly tends to the density of states of an

Andreev billiard with an infinite superconducting gap as the energy becomes larger.

4.4. Magnetic field

If a magnetic field is present, the time reversal symmetry is broken and we wish to

treat this transition semiclassically as in [64, 70]. Note that since for the leading order

diagrams each stretch is traversed in opposite directions by an electron and a hole we are

effectively considering the same situation as for parametric correlations [71, 72]. Either

way, the idea behind the treatment is that the classically small magnetic field affects the

classical trajectories very little, but adds many essentially random small perturbations

to the action. The sum of these fluctuations is approximated using the central limit

theorem, and leads to an exponential damping so the links now provide a factor of

TH/N(1− iǫ+ b). The parameter b is related to the magnetic field via b = (Φ/Φc)
2 as in
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section 2.1. For an l-encounter however, as the stretches are correlated and affected

by the magnetic field in the same way, the variance of the random fluctuations of

all the stretches is l2 that of a single stretch. Hence each encounter now contributes

N (1− ilǫ+ l2b) /T l
H and again the correlation inside the encounters leads to a small but

important effect.

Similarly to the treatment without the magnetic field above, we can put these

contributions into the recursions in section 3.1 by setting

xl =
− (1− ilǫ+ l2b)

(1− iǫ+ b)l
· r̃l−1, zi,l = zo,l = 1 · r̃l−1, (46)

and

f = g(1− iǫ+ b), r̃ =
r

1− iǫ+ b
. (47)

The intermediate generating function is then given by the implicit equation

− r2g5 + (1 + iǫ+ b)r2g4 + (2− iǫ− b)rg3

− (2 + iǫ− b)rg2 − (1− iǫ+ b)g + 1 = 0, (48)

and the generating function G(ǫ, b, r) of the magnetic field dependent correlation

functions C(ǫ, b, n), which is still connected to g via G = g/(1− rg), is given by

r2(r − 1)3G5 +
(

iǫr − iǫ+ 5r2 − 10r + 5− br − b
)

r2G4

+
(

3iǫr − iǫ+ 10r2 − 12r + 2− 3br − b
)

rG3

+ (3iǫ+ 10r − 6− 3b)rG2 − (1− 5r − iǫ+ b)G + 1 = 0. (49)

Removing the magnetic field by setting b = 0 reduces both these equations (after

factorizing) to the previous results (29) and (31). Next we again search for and verify

an algebraic equation for H(ǫ, b, r) = 1/(ir)
∫

[∂G(ǫ, b, r)/∂ǫ]dr, though the higher order

makes this slightly more complicated, finding

4b2r4 (r − 1)H5 + 4br3 [iǫ− 3b+ r (2b− iǫ)]H4

+ r2
[

ǫ2 (1− r) + 2iǫb (5− 3r)− b (13b+ 4) + br (5b+ 4)
]

H3

+ r
[

2 (iǫ− 3b) (1− iǫ+ b) + r
(

(1− iǫ+ b)2 + 4b− 1
)]

H2

−
[

(1− iǫ+ b)2 − r (1− 2iǫ+ 2b)
]

H + 1 = 0. (50)

In order to check the agreement with the RMT result we substitute H(ǫ, b,−1) =

[−iW (ǫ, b) + 1] /2 into (50). This leads to

b2W 5 − 2bǫW 4 −
(

4b− b2 − ǫ2
)

W 3 + 2(2− b)ǫW 2 +
(

4− 4b+ ǫ2
)

W + 4ǫ = 0, (51)

which corresponds to the RMT result (11) with no phase (φ = 0). The density of states

calculated from this equation is shown in figure 8 for different values of b. The gap

reduces for increasing b, closes exactly at the critical flux (b = 1) and the density of

states becomes flat (at 1) as b → ∞.
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Figure 8. The effect of a time reversal symmetry breaking magnetic field on the

density of states of a chaotic Andreev billiard with a single superconducting lead for

b = 0 (dotted line), b = 1/4 (solid line), b = 1 (dashed line) and b = 9/4 (dashed

dotted line).

5. Density of states with two leads

Next we consider a classically chaotic quantum dot connected to two superconductors

with N1 and N2 channels respectively and a phase difference φ, as depicted in figure 2a.

The density of states, as in section 2.1 and [35, 69], can then be reduced to equation

(15) but with

C(ǫ, φ, n) =
1

N
Tr

[

S∗
(

− ǫ~

2τd

)

e−iφ̃S

(

+
ǫ~

2τd

)

eiφ̃
]n

, (52)

where φ̃ is again a diagonal matrix whose first N1 elements from the first superconductor

S1 are φ/2 and the remaining N2 elements from S2 are −φ/2. Note that the case

φ = 0 corresponds to the previous case of a single superconductor with N = N1 + N2

channels. When we substitute the semiclassical approximation for the scattering matrix

(17) into (52), and especially if we write the scattering matrix in terms of its reflection

and transmission subblocks, the effect of the superconductors’ phase difference becomes

simple. Namely, each electron (unprimed) trajectory which starts in lead 1 and ends in

lead 2 picks up the phase factor exp(−iφ) while each unprimed trajectory going from

lead 2 to lead 1 receives the factor exp(iφ). Reflection trajectories which start and

end in the same lead have no additional phase factor, as depicted in figure 9. Since

exchanging the leads gives the opposite phase, we expect the solution to be symmetric

if we instantaneously exchange N1 with N2 and change φ to −φ.

As these factors are multiplicative, we can equivalently say that each electron

trajectory leaving superconductor 1 or 2 picks up exp(−iφ/2) or exp(iφ/2) while each

one entering lead 1 or 2 picks up exp(iφ/2) or exp(−iφ/2). To include these factors
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ζ1

ζ2

1ζ’

4ζ’

ζ3
2ζ’

3ζ’

ζ4

e
e

+i
−i

+ φ
21S ,

2S  , − φ
2φ

φ

Figure 9. The paths may start and end in either of the two leads as shown. ζ4 as

it travels from lead 1 to lead 2 obtains a phase factor exp(−iφ), ζ2 travelling back

contributes exp(iφ) while the others does not contribute any phase. The encounters

are again marked by circles and S1 and S2 denote the two superconducting leads at the

corresponding superconducting phases ±φ/2. This diagram is equivalent to the one in

figure 4f.

in our semiclassical diagrams, we can simply remember that in our tree recursions in

section 3.1 the channels we designated as ‘incoming’ channels have electrons leaving

them while electrons always enter the outgoing channels. Each incoming channel (in

the original channel sum in (18)) can still come from the N possible, but with the

trajectory leaving it now provides the factor N1 exp(−iφ/2) + N2 exp(iφ/2). Similarly

each outgoing channel now provides the complex conjugate of this factor. Recalling the

power of N−2n coming from the links and encounters, we can update the contribution

of each diagram or tree (24) to
(

N1e
− iφ

2 +N2e
iφ

2

)n (

N1e
iφ

2 +N2e
− iφ

2

)n

N2n (1− iǫ)n

V
∏

α=1

− (1− ilαǫ)

(1− iǫ)lα
. (53)

However, moving an l-encounter into lead 1 means combining l incoming channels,

l links and the encounter itself. These combined incoming channels, with l electron

trajectories leaving, will now only give the factor N1 exp(−ilφ/2)+N2 exp(ilφ/2) where

the important difference is that l is inside the exponents. We therefore make the

replacement
(

N1e
− iφ

2 +N2e
iφ
2

)l

N l
→

(

N1e
− ilφ

2 +N2e
ilφ
2

)

N
(54)

as well as removing the encounter from (53). Similarly when we move the encounter

into the outgoing leads we take the complex conjugate of (54).

To mimic these effects in the semiclassical recursions we can set

xl =
− (1− ilǫ)

(1− iǫ)l
· r̃l−1, β =

(

N1e
− iφ

2 +N2e
iφ

2

)

N
, (55)
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zi,l =

(

N1e
− ilφ

2 +N2e
ilφ

2

)

Nβl
· r̃l−1, zo,l =

(

N1e
ilφ

2 +N2e
− ilφ

2

)

N (β∗)l
· r̃l−1, (56)

f = g
(1− iǫ)

ββ∗ , r̃ = r
ββ∗

(1− iǫ)
, (57)

in section 3.1. Including these substitutions in the recursion relation (20) and summing

we obtain

g

ββ∗ − rgĝ
=

iǫββ∗g

(ββ∗ − rgĝ)2
+

N1

N

1

β∗e−
iφ

2 − rĝ
+

N2

N

1

β∗e
iφ

2 − rĝ
, (58)

and a similar equation from (21). The generating function of the correlation functions

C(ǫ, φ, n) is then given from (22) by

G =
N1

N

g

βe
iφ

2 − rg
+

N2

N

g

βe
−iφ

2 − rg
. (59)

Returning to (58) and multiplying through by ĝ, we can see that the first two terms

are symmetric in g and ĝ. Combining the other two and taking the difference from the

corresponding equation for ĝ we have

ĝ
[

(β∗)2 − rĝ
]

(

β∗e−
iφ

2 − rĝ
)(

β∗e
iφ

2 − rĝ
) =

g [β2 − rg]
(

βe
iφ

2 − rg
)(

βe−
iφ

2 − rg
) . (60)

The resulting quadratic equation, when substituted back into (58) leads to a sixth

order equation for g. Note that the right hand side of (60) is (recalling (55) and that

N1 + N2 = N) the same as (59) so it is clear that G satisfies the required symmetry

upon swapping the leads (i.e. swapping N1 with N2 and φ with −φ).

5.1. Equal leads

To make the equations more manageable we focus for now on the simpler case where

the leads have equal size and N1 = N2 = N/2. Then β = cos(φ/2) is real and we can

see from (60) or zi = zo that g = ĝ is a solution. Putting this simplification into (58)

we can obtain the following quartic

r2g4 − r(1 + r + iǫr)g3 + 2iǫβ2rg2 + (1− iǫ+ r)β2g − β4 = 0. (61)

We may also find an algebraic equation of fourth order for G if we solve (59) for g and

substitute the solution

g =
β

2

2rβG+ β −
√

β2 + 4rG (1 + rG) (β2 − 1)

r(1 + rG)
, (62)

into (61). Note that we take the negative square root to agree with the previous result

when the phase is 0 (i.e. β = 1) though this sign does not affect the equation one finally

finds for G. After the fourth order equation for G has been found we can again search

for and verify an equation for H(ǫ, φ, r) = 1/(ir)
∫

(∂G(ǫ, φ, r)/∂ǫ)dr,

ǫ2r3
[

1− 2r
(

2β2 − 1
)

+ r2
]

H4
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Figure 10. The density of states of a chaotic quantum dot coupled to two

superconductors with the same numbers of channels and phase differences 0 (dotted

line), 5π/6 (solid line), 21π/22 (dashed line) and 123π/124 (dashed dotted line).

+ iǫr2
[

2− 3iǫ− 4r (1− iǫ)
(

2β2 − 1
)

+ r2 (2− iǫ)
]

H3

− r
[

1− 4iǫ− 3ǫ2 − 2r
(

1− 3iǫ− ǫ2
) (

2β2 − 1
)

+ r2 (1− 2iǫ)
]

H2

−
[

(1− iǫ)2 − 2r (1− iǫ)
(

2β2 − 1
)

+ r2
]

H + β2 = 0. (63)

In order to see the agreement of our result with the RMT prediction we again substitute

H(ǫ, φ,−1) = [−iW (ǫ, φ) + 1]/2 such that d(ǫ) = −ImW (ǫ, φ). If we do so we find

ǫ2β2W 4 + 4ǫβ2W 3 + (4β2 − ǫ2 + 2ǫ2β2)W 2 + 4ǫβ2W − ǫ2 + ǫ2β2 = 0, (64)

which corresponds to (11) for zero magnetic field. Moreover, if the phase difference is

zero (and β = 1), we can take out the factor W and recover (12).

Solving this equation yields the density of states. If we insert different values for the

phase φ one finds that the hard gap in the density of states decreases with increasing

phase difference while the density of states has a peak at the end of the gap which

increases and becomes sharper with increasing phase. Finally when the phase difference

is equal to π the gap closes and the peak vanishes so the density of states becomes

identical to 1. This can all be seen in figure 10.

5.2. Magnetic field.

In the presence of a magnetic field, we again have to change the diagrammatic rules

as in section 4.4. Doing the calculation above with these modified diagrammatic rules

leads to a sixth order equation for g:

r3g6 − r2 [1 + r (1 + iǫ+ b)] g5 − r2β2 (1− 2iǫ− 2b) g4

+ rβ2 [2− iǫ− b+ r (2 + iǫ− b)] g3 − rβ4 (1 + 2iǫ− 2b) g2

− β4 (1 + r − iǫ+ b) g + β6 = 0. (65)
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Figure 11. Magnetic field dependence of the density of states of a chaotic Andreev

billiard with phase difference φ = 5π/6 for b = 0 (dotted line), b = 0.1024 (solid line),

b = 0.4096 (dashed line) and b = 1 (dashed dotted line).

The relation (59) between G and g remains unchanged and therefore we may find a

sixth order equation for G. We find the corresponding H , which is recorded as (A.2) in

Appendix A, using a computer search over sixth order equations with polynomial (in

ǫ, φ, b and r) coefficients whose expansion in r (33) matches the correlation functions

calculated by expanding G. We note that for this order polynomial it was not feasible

(in terms of computational time and memory) to solve the equations resulting from the

differentiation algorithm described in section 4.2 and to find the intermediate generating

function I in all generality. However, we succeeded to find a polynomial equation for I

that was satisfied by the derivatives of both rH and G for a large number of numerical

values of the parameters (ǫ, φ, b). For each parameter involved, the number of the

values checked was larger than the maximum degree of the parameter in the conjectured

equation. While we cannot rule out the possibility that the true equation for I has a

higher order, given the large number of numerical values checked this is highly unlikely.

From H we obtain the equation for W (ǫ, φ, b),

b2β2W 6 − 2ǫbβ2W 5 +
(

2b2β2 + ǫ2β2 − 4bβ2 − b2
)

W 4

+ 2
(

ǫb+ 2ǫβ2 − 2ǫbβ2
)

W 3 +
(

4β2 − b2 − ǫ2 − 4bβ2 + b2β2 + 2ǫ2β2
)

W 2

+ 2
(

ǫb+ 2ǫβ2 − ǫbβ2
)

W − ǫ2 + ǫ2β2 = 0, (66)

which corresponds exactly to the full RMT result (11) expanded.

As an example, the magnetic field dependence of the density of states is shown at

the phase difference of 5π/6 in figure 11. As the magnetic field is increased one finds a

reduction of the gap and the peak appearing for a phase difference φ > 0 vanishes again.

Moreover the higher the phase difference the lower the magnetic field needed in order to

close the gap. While for φ = 0 the gap closes at b = 1 in the case of a phase difference
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(a) (b) (c)

Figure 12. Phase dependence of the density of states of a chaotic Andreev billiard

with phase difference φ = 0 (dotted line), φ = π/2 (solid line), φ = 5π/6 (dashed

line) and φ = 21π/22 (dashed dotted line). (a) At magnetic field b = 0.1024, (b) at

b = 0.4096 and (c) at b = 1.

of 5π/6 one needs b ≈ 0.4096 and for φ = 21π/22 a magnetic field corresponding to

b ≈ 0.1024 closes the gap. In particular the critical magnetic field for which the gap

closes is given by [35]

bc =
2 cos (φ/2)

1 + cos (φ/2)
. (67)

For ever increasing magnetic field the density of states approaches 1 and we can see that

a higher phase difference causes a faster convergence to this limit. Some examples are

plotted in figure 12 and there we see that for b = 1 the curve for φ = 21π/22 is nearly

constant.

5.3. Unequal leads

Removing the restriction that the leads have equal size we return to a sixth order

polynomial for g and G when substituting (60) into (58) and then (59). Expanding G as

a power series in r via G =
∑

rn−1C(ǫ, φ, n) now gives three starting values for C(ǫ, φ, 1)

and we choose the one that coincides with the result from the semiclassical diagrams,

namely ββ∗/ (1− iǫ). Choosing the variable y to represent the relative difference in the

lead sizes

y =
N1 −N2

N
, β = cos

(

φ

2

)

+ iy sin

(

φ

2

)

, (68)

leads to a particularly compact solution, and as before, we can go through our

roundabout route of finding the generating function of interest H(ǫ, φ, y, r), which is

recorded as (A.3) in Appendix A. Although it also was not possible to verify (other

than at a large number of parameter values) this sixth order equation, from it we can

obtain the polynomial satisfied by W (ǫ, φ, y):
[

ǫ2β2W 4 + 4ǫβ2W 3 +
(

4β2 − ǫ2 + 2ǫ2β2
)

W 2 + 4ǫβ2W − ǫ2 + ǫ2β2
]

(2 + ǫW )2

+ 4ǫ2y2
(

1− β2
)

= 0, (69)
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(a) (b) (c)

Figure 13. Dependence of the density of states of an Andreev billiard on the difference

y = (N1 −N2) /N in size of the leads with y = 0 (dashed dotted line), y = 4/5 (dashed

line), y =
√
24/5 (solid line) and y = 1 (dotted line). (a) At phase difference φ = 2π/3,

(b) at φ = 5π/6 and (c) at phase difference φ = 21π/22.

where we have redefined β to just its real part, β = cos(φ/2) as in the case with equal

leads, and the evenness in y follows from the symmetry under swapping the leads and φ

to −φ. The term in the square brackets is simply (64) and so we recover the result with

equal leads when y = 0. Likewise we can check that when we only have a single lead

(y = ±1) we recover a factor corresponding to (12) so that the phase, as expected, no

longer plays a role. From this equation we can plot the density of states as in figure 13

and see how the difference in lead sizes y interpolates between the result with equal

leads above and the density of states with a single lead in (42). Note in particular that

the peak in the density of states as the phase difference nears π vanishes slowly as y

approaches ±1 so that we can see a second gap appear in the density of states for leads

differing distinctly in channel numbers (for example the solid line in figures 13b and c).

6. Ehrenfest time dependence

So far we have been looking at the regime where the Ehrenfest time τE ∼ | ln~|, the
time below which wave packets propagate essentially classically (and above which wave

interference dominates), is small compared to the dwell time τd, the typical time the

trajectories spend inside the scattering region. This is the same limit described by RMT

and we have seen the agreement between semiclassics and RMT in sections 4 and 5 above.

Moving away from this limit we can treat the typical effect of the Ehrenfest time on

the correlation functions C(ǫ, n), for now for the simplest case of a single lead and no

magnetic field. To contribute in the semiclassical limit, the correlated trajectories should

have an action difference of the order of ~ which in turn means that the encounters have

a duration of the order of the Ehrenfest time. Increasing this relative to the dwell time,

or increasing the ratio τ = τE/τd, then increases the possibility that all the trajectories

travel together for their whole length in a correlated band. Likewise the probability of
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forming the diagrams (as in figure 4) considered before reduces. All told, the Ehrenfest

time dependence [49] leads to the simple replacement

C(ǫ, τ, n) = C(ǫ, n)e−(1−inǫ)τ +
1− e−(1−inǫ)τ

1− inǫ
. (70)

This replacement leaves the n = 1 term unchanged and had previously been shown for

n = 2 [60] and n = 3 [39]. The exponential growth of differences between trajectories

due to the chaotic motion means that we just add the first term from the previous

diagrams with encounters in (70) to the second term from the bands as their opposing

length restrictions lead to a negligible overlap. In fact this separation into two terms

was shown [73, 74] to be a direct consequence of the splitting of the classical phase space

into two virtually independent subsystems.

We leave the technical demonstration of (70) to [49] but the result follows by treating

the diagrams considered before, which are created by sliding encounters together or into

the lead (like the process depicted in figures 4 and 5), as part of a continuous deformation

of a single diagram. With a suitable partition of this family one can see that each set has

the same τE dependence and hence that (70) holds for all n. It is clear that in the limit

τ = 0 (70) reduces to the previous (and hence RMT) results while in the opposite limit,

τ = ∞, substituting (70) into (32) and performing a Poisson summation we obtain the

Bohr-Sommerfeld (BS) [29] result

dBS(ǫ) =
(π

ǫ

)2 cosh(π/ǫ)

sinh2(π/ǫ)
. (71)

This result was previously found semiclassically by [30] and corresponds to the classical

limit of bands of correlated trajectories.

For arbitrary Ehrenfest time dependence we simply substitute the two terms in

(70) into (32). With the second term we include 1− (1 + τ)e−τ from the constant term

(this turns out to simplify the expressions) and again perform a Poisson summation to

obtain

d2(ǫ, τ) = 1− (1 + τ)e−τ + 2Im
∞
∑

n=1

(−1)n

n

∂

∂ǫ

(

1− e−(1−inǫ)τ

1− inǫ

)

= dBS(ǫ)− exp

(

−2πk

ǫ

)(

dBS(ǫ) +
2k(π/ǫ)2

sinh(π/ǫ)

)

, (72)

where k = ⌊(ǫτ + π)/(2π)⌋ involves the floor function, and we see that this function is

zero for ǫτ < π.

Of course the first term in (70) also contributes and when we substitute into (32) we

obtain two further terms from the energy differential. These however may be written,

using our semiclassical generating functions, as

d1(ǫ, τ) = e−τ
[

1− 2Re eiǫτH(ǫ,−eiǫτ )
]

+ τe−τ
[

1− 2Re eiǫτG(ǫ,−eiǫτ )
]

. (73)

Because G and H are given by cubic equations, we can write this result explicitly as

d1(ǫ, τ) =

√
3e−τ

6ǫ
Re [Q+(ǫ, τ)−Q−(ǫ, τ)] +

√
3τe−τ

6
Re [P+(ǫ, τ)− P−(ǫ, τ)] , (74)
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(a) (b)

Figure 14. (a) Density of states for τ = τE/τd = 2 (solid line), along with the BS

(dashed) limit τ → ∞ and the RMT (dotted) limit τ = 0, showing a second gap just

below ǫτ = π. (b) Ehrenfest time related 2π/τ -periodic oscillations in the density of

states after subtracting the BS curve.

where

Q±(ǫ, τ) =

[

8− 24ǫ (1− cos(ǫτ))

sin(ǫτ)
− 24ǫ2 − 24ǫ2 (1− cos(ǫτ))

sin2(ǫτ)
+

6ǫ3 (1− cos(ǫτ))

sin(ǫτ)

+
2ǫ3 (2− 3 cos(ǫτ) + cos3(ǫτ))

sin3(ǫτ)
± 6ǫ

√
3D (1− cos(ǫτ))

sin2(ǫτ)

]
1
3

, (75)

P±(ǫ, τ) =

[

36ǫ

(1 + cos(ǫτ))2
− 9ǫ2 sin(ǫτ)

(1 + cos(ǫτ))3
+

ǫ3

(1 + cos(ǫτ))3
± 3

√
3D

(1 + cos(ǫτ))2

]
1
3

. (76)

These all involve the same discriminant D and so the differences in (74) are only real

(and hence d1(ǫ, τ) itself is non-zero) when

D(ǫ, τ) = ǫ4 − 8ǫ3 sin(ǫτ) + 4ǫ2 [5 + 6 cos(ǫτ)] + 24ǫ sin(ǫτ)− 8 [1 + cos(ǫτ)] , (77)

is positive. Recalling that the second contribution is zero up to ǫτ = π, the complete

density of states is therefore zero up to the first root of D(ǫ, τ). The width of this gap

is then solely determined by the contribution from quantum interference terms given

by the trajectories with encounters. The hard gap up to the first root shrinks as τ

increases (see figure 15a) and when taking the limit τ → ∞ while keeping the product

ǫτ constant (77) reduces to −8 [1 + cos(ǫτ)] which has its first root at ǫτ = π. The gap

then approaches E = πEE for τ ≫ 1 where EE = 2~/τE is the Ehrenfest energy. So one

indeed observes a hard gap up to πEE in the limit τ → ∞ at fixed ǫτ in agreement with

the quasiclassical result of [40].

Alongside this reduction in size of the first gap, which was predicted by effective

RMT [13], when τ ≥ 0.916 the discriminant (77) has additional roots. Between the

second and third root D(ǫ, τ) is also negative and a second gap appears. As τ increases

the roots spread apart so the gap widens. For example, the complete density of states

for τ = 2 is shown in figure 14a along with the oscillatory behaviour visible at larger
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(a) (b)

Figure 15. (a) Width (and end point) of the first gap and (b) width of the second

gap as a function of τ .

(a) (b)

Figure 16. Density of states as a function of ǫτ = E/EE for various values of τ

showing the appearance of a second gap below ǫτ = π. Inset: Density of states for

τ = 20 (solid line) together with the BS limit (dashed).

energies (with period 2π/τ) in figure 14b. There the second gap is clearly visible and

only ends when the second contribution d2(ǫ, τ) becomes non-zero at ǫτ = π. In fact for

τ > π/2 the third root of D(ǫ, τ) is beyond ǫτ = π so the second gap is cut short by the

jump in the contribution d2(ǫ, τ). Since the second root also increases with increasing

τ the gap shrinks again, as can be seen in figure 15b.

To illustrate this behaviour further, the density of states is shown for different

values of τ in figure 16. One can see first the formation and then the shrinking of the

second gap. As can be seen in the inset of figure 16b the second gap persists even for

large values of τ and the size of the first hard gap converges slowly to ǫτ = π. The plot

for τ = 20 also shows how the density of states converges to the BS result.

6.1. Effective RMT

As mentioned above, the shrinking of the first gap has been predicted by effective RMT

where the effect of the Ehrenfest time is mimicked [37] by reducing the number of



EHRENFEST TIME 32

channels in the lead by a factor eτ (to correspond to the part of classical phase space

where the trajectories are longer than the Ehrenfest time) and to multiply the scattering

matrix by the phase eiǫτ/2 to represent the energy dependence of the lead. The random

matrix diagrammatic averaging leads to the set of equations [13, 44]

W 2 + 1 = W 2
2

W +W2 sin u = − ǫ

2
W2 (W2 + cosu+W sin u) , (78)

where u = ǫτ/2 and the density of states is given by (for u < π/2)

d(ǫ, τ) = −e−τ Im
(

W − u

cosu
W2

)

. (79)

The equations in (78) can be simplified to obtain a cubic for W (and W2) and in this

form we can compare with our semiclassical results. In fact, making the substitution

H = [iW − 1] /2r and setting r = − exp(iǫτ) to get the first part in (73) in the

form of the first term in (79) we obtain exactly the same polynomial and hence

agreement. Likewise when we substitute G = − [iuW2/ cosu+ τ ] /2rτ we obtain the

same polynomial for the second part, albeit with the real offset tanu which does not

affect the density of states.

Of course this agreement provides semiclassical support for the phenomenological

approach of effective RMT as well as showing that (79) is valid for u beyond π/2. In

principle then the second gap could also have been found using effective RMT, but of

course effective RMT misses the second contribution to the density of states d2(ǫ, τ).

This contribution turns out to be straightforward to obtain semiclassically, and can be

compared to the bands treated in [40].

6.2. Two superconducting leads

If we include the effect of a symmetry breaking magnetic field then, because of

the way this affects the contribution of different sized encounters (as described in

section 4.4), such a simple replacement as in (70) no longer holds. This situation has

however been treated using effective RMT [44] allowing them to also determine how

the critical magnetic field (at which the gap closes) depends on the Ehrenfest time.

Without the simple replacement of the magnetic field dependent correlations functions

we are currently unable to confirm this result semiclassically. But if we look at two

superconducting leads (for simplicity of equal size) at different phase this effect can be

included in the channel sum and treated as above (the effective RMT result can be found

by a simple modification of the treatment in [44]). Important to remember is that the

second part (of (70)) corresponds to bands of trajectories which are correlated for their

whole length and so they all start and end together (in the same leads). Therefore the

second contribution has to be multiplied by [1 + cos(nφ)]/2 leading to

C(ǫ, φ, τ, n) = C(ǫ, φ, n)e−(1−inǫ)τ +
1 + cos(nφ)

2

1− e−(1−inǫ)τ

1− inǫ
. (80)

The first part of the density of states for non zero Ehrenfest time then remains as in

(73) but with G(ǫ, r) and H(ǫ, r) replaced by G(ǫ, φ, r) and H(ǫ, φ, r), respectively. The
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(a) (b) (c)

Figure 17. Density of states for τ = 2 (solid line) along with the τ = 0 (dotted)

and τ = ∞ (dashed) limits for a chaotic Andreev billiard with phase difference (a)

φ = π/18, (b) φ = 5π/6 and (c) φ = π.

second contribution in this case however may be written as the average of the φ = 0

contribution and a contribution with the full phase difference φ,

d2(ǫ, φ, τ) =
1

2
[d′2(ǫ, 0, τ) + d′2(ǫ, φ, τ)] . (81)

Here d′2(ǫ, φ, τ) may be again written as the sum of the τ = ∞ result

d
′(1)
2 (ǫ, φ, τ) =

π

2ǫ2 sinh2 (π/ǫ)

[

(π + 2πk1 − φ) cosh

(

π − 2πk1 + φ

ǫ

)

+ (π − 2πk1 + φ) cosh

(

π + 2πk1 − φ

ǫ

)]

, (82)

and some correction

d
′(2)
2 (ǫ, φ, τ) = − π

2ǫ2 sinh2 (π/ǫ)

{[

π cosh
(π

ǫ

)

+ (2πk2 − φ) sinh
(π

ǫ

)]

e−
2πk2−φ

ǫ

+
[

π cosh
(π

ǫ

)

+ (2πk3 + φ) sinh
(π

ǫ

)]

e−
2πk3+φ

ǫ

}

, (83)

with k1 = ⌊(π + φ) /(2π)⌋, k2 = ⌊(ǫτ + π + φ) /(2π)⌋ and k3 = ⌊(ǫτ + π − φ) /(2π)⌋.
Since the ki and φ only occur in the combinations 2πk1 − φ, 2πk2 − φ and 2πk3 + φ it

is obvious that these contributions have oscillations in the phase φ with period 2π. It

can also be easily seen that for φ = 0 the previous result for the density of states in the

Ehrenfest regime is reproduced.

With |φ| < π we have k1 = k2 = k3 = 0 for ǫτ < π − |φ|. Therefore one again sees

that d2 = 0 as long as ǫτ < π − |φ|. The first part d
′(1)
2 equals the Bohr-Sommerfeld

result (71), so in the limit τ = ∞ this result is reproduced again. The oscillations in

ǫ seen in the φ = 0 case which have a period of 2π/τ can still be seen due to the fact

that the φ = 0 result enters d2(ǫ, φ, τ) even if φ 6= 0. However one gets additional (but

smaller) steps at energies satisfying ǫ = [(2n− 1)π ∓ φ]/τ .

We plot the density of states for τ = 2, along with the τ = 0 and τ = ∞ limits

in figure 17 for different values of the phase difference. We can see that as the phase

difference increases the second intermediate gap (c.f. figure 14a) shrinks quickly. The

reason for this shrinking is twofold: On one hand the gap in the RMT-like contribution
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(a) (b)

Figure 18. Density of states for τ = 1/2 (dotted line), τ = 1 (dashed) and τ = 2

(solid) showing the phase dependent jumps for phase difference (a) φ = π/18 and (b)

φ = 5π/6.

shrinks and on the other the second contribution is zero only up to ǫτ = π−|φ|. Moreover

if φ → π the modified correlation function tends to zero so the density of states converges

to (1+τ)e−τ +d2(ǫ, τ). For a finer look at the Ehrenfest time dependence and the phase

dependent jumps we plot the density of states for τ = 1/2, 1 and 2 for phases φ = π/18

and 5π/6 in figure 18.

7. Conclusions

From the semiclassical treatment of the density of states of chaotic Andreev billiards we

have seen how fine correlations between ever larger sets of classical trajectories lead to

the interference effects which cause a hard gap in the density of states. This treatment

(c.f. the reservations in [38]) builds on the recent advances in identifying [55], codifying

[56, 57] and generating [47] the semiclassical contributions, and, because of the slow

convergence of the expansion for the density of states in (15), relies on the ability to treat

correlations between n trajectories for essentially all n. The correlations between these

trajectories, encoded in encounter regions where they differ slightly, are represented

by simple (tree) diagrams. These diagrams are related to those that appear for the

conductance [56] say where for increasing n they cause ever decreasing (in inverse

channel number) corrections; here though they all contribute with roughly the same

(slowly decreasing) importance. Equally it is because we need to treat all orders that

makes Andreev billiards so interesting and the resultant effects so large.

Along with obtaining the minigap, found by RMT [27], for a billiard with a single

lead, we could also obtain the full result for the density of states of an Andreev billiard

with two superconducting leads at phase difference φ, treated using RMT in [35]. The

semiclassical paths that connect the two leads accumulate phases e±iφ and cause the gap

to shrink with increasing phase difference. It was also possible to treat the effect of a
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time reversal symmetry breaking magnetic field b, considered with RMT in [35], which

makes the formation of the classical trajectory sets, traversed in opposite directions by

an electron and a hole, less likely. This in turn leads to a reduction of the minigap and

a smoothing of the density of states, especially for large phase differences φ. We have

found that in the limits φ → π and b → ∞ quantum effects vanish and the density of

states becomes identical to the density of states of the isolated billiard.

Of course all these results (and the RMT ones [27, 35]) are only valid to leading

order in inverse channel number. With the formalism shown in this article, to go to

subleading order we only require a way of generating the possible semiclassical diagrams.

The contribution of each [56, 57] and how they affect the density of states is in principle

known, but the key problem is that the structure we used here breaks down, namely

that in the tree recursions when we cut a rooted plane tree at a node we created further

rooted plane trees [47]. How to treat the possible diagrams which include closed loops

etc, though generated for n = 1 [56] and n = 2 [57] by cutting open closed periodic

orbits, remains unclear. However the treatment for n = 1 and n = 2 makes clear that

the diagrams that contribute at order (1/Nm, n) are related to those that contribute at

order (1/Nm−1, n+ 1) raising the possibility of a recursive treatment starting from the

leading order diagrams described here.

Worth noting is that the semiclassical techniques we used here are only valid up

to the Heisenberg time, meaning that we have no access to the density of states on

energy scales of the order of the mean level spacing. Though for ballistic transport the

Heisenberg time is much longer than the average dwell time (so the mean level spacing

is much smaller than the Thouless energy) importantly the RMT treatment [75] shows

that a microscopic gap persists in this regime even when the time reversal symmetry

is completely broken (by the magnetic field say). It may be possible that applying

the semiclassical treatment of times longer than the Heisenberg time for closed systems

[76, 77] to transport would allow for accessing this regime as well.

In the opposite regime however, that of the Ehrenfest time, semiclassics provides

a surprisingly simple result [49] allowing complete access to the crossover from the

universal RMT regime to the more classical Bohr-Sommerfeld regime. The gap shrinks

due to the suppression of the formation of encounters while a new class of diagrams

(correlated bands) become possible. Interestingly the contribution from trajectories with

encounters agrees exactly with the results from effective RMT [13], so our semiclassical

result provides support for this phenomenological approach. Of course effective RMT

misses the bands of correlated trajectories (c.f. those in [40]) which combined with the

other contribution lead to new effects, most notably a second gap in the density of states

for intermediate Ehrenfest times.
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Appendix A.

The intermediate generating function I(ǫ, r) for the billiard with a single lead and no

magnetic field in section 4.2 is given by

1−
[

(1− a)2 + 6r + (1 + a)2 r2
]

I +
[

4 (1− a)3 −
(

8 + 20a2 − a4
)

r + 4 (1 + a)3 r2
]

rI2

+
[

4 (1− a)3 −
(

16− 24a+ 44a2 − 8a3 − a4
)

r + 2
(

12 + 32a2 − a4
)

r2

−
(

16 + 24a+ 44a2 + 8a3 − a4
)

r3 + 4 (1 + a)3 r4
]

rI3 = 0, (A.1)

where we set a = iǫ.

The generating function H(ǫ, φ, b, r) for the billiard with equal leads at phase

difference φ and magnetic field b in section 5.2 is given by

β2 −
(

(1− a+ b)2 + r2 − 2r (1− a+ b)
(

2β2 − 1
))

H

− r
[

(1− a+ b) (1− 3a+ 7b)− 2r
(

1 + 5b+ b2 − (3 + 2b) a + a2
) (

2β2 − 1
)

+ r2 (1− 2a+ 2b)
]

H2

+ r2
[

−b (19b+ 10) + 2a (9b+ 1)− 3a2

+ 2r
(

2b (3b+ 4)− 2a (4b+ 1) + 2a2
) (

2β2 − 1
)

+ r2
(

−b (b+ 6) + 2a (b+ 1)− a2
)]

H3

− r3
[

b (25b+ 4)− 14ab+ a2 − 2r
(

b (13b+ 4)− 10ab+ a2
) (

2β2 − 1
)

+ r2
(

b (5b+ 4)− 6ab+ a2
)]

H4

− 4r4b
[

4b− a− 2r (3b− a)
(

2β2 − 1
)

+ r2 (2b− a)
]

H5

− 4r5b2
[

1 + r2 − 2r
(

2β2 − 1
)]

H6 = 0, (A.2)

where we also used a = iǫ. For the billiard with unequal leads and no magnetic field in

section 5.3, the generating function H(ǫ, φ, y, r) is given by

ββ∗ (1− a)2 + ββ∗r2 −
(

β2 + β∗2) (1− a) r

+
[

− (1− a)4 + r
(

(β + β∗)2
(

1− a3
)

+
(

3 (β + β∗)2 + 2ββ∗) a (a− 1)
)

+ r2
((

3 (β + β∗)2 − 2ββ∗ − 2
)

a (2− a) + 2 (1 + β + β∗) (1− β − β∗)
)

+ r3
(

(β + β∗)2 − a
(

(β + β∗)2 + 2ββ∗))− r4
]

H

+ r
[

(1− a)3 (5a− 1) +
(

(β + β∗)2
(

1− 7a− 7a3 + a4
)

+ (3β + 4β∗) (4β + 3β∗) a2
)

r

+ 2 (1 + β + β∗) (1− β − β∗)
(

1− 6a− 2a3
)

r2

−
(

15β2 + 15β∗2 − 14 + 28ββ∗) a2r2

+
(

(β + β∗)2 (1− 5a) +
(

3β2 + 3β∗2 + 7ββ∗) a2
)

r3 + (4a− 1) r4
]

H2

+ ar2
[

2 (1− a)2 (2− 5a) + (β + β∗)2
(

4a3 − 15a2 + 15a− 4
)

r

+ 2 (1 + β + β∗) (1− β − β∗)
(

a3 − 8a2 + 12a− 4
)

r2

+ (β + β∗)2
(

−3a2 + 9a− 4
)

r3 + (4− 6a) r4
]

H3
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+ a2r3
[

16a− 10a2 − 6 + (β + β∗)2
(

6− 13a+ 6a2
)

r

+ 2 (1 + β + β∗) (1− β − β∗)
(

6− 10a+ 3a2
)

r2

+ (β + β∗)2
(

6− 7a+ a2
)

r3 + (4a− 6) r4
]

H4

+ a3r4
[

4− 5a+ 4 (β + β∗)2 (a− 1) r + 2 (1 + β + β∗) (1− β − β∗) (3a− 4) r2

+ (β + β∗)2 (2a− 4) r3 + (4− a) r4
]

H5

+ a4r5
(

−1 − r4 + r
(

1 + r2
)

(β + β∗)2 + 2r2 [1 + β + β∗) (1− β − β∗)
]

H6 = 0, (A.3)

likewise with a = iǫ.
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