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Abstract. An optimal algorithm is described for solving the deconvolution

problem of the form ku :=
∫ t

0 k(t − s)u(s)ds = f(t) given the noisy data fδ , ||f −
fδ|| ≤ δ. The idea of the method consists of the representation k = A(I +S), where
S is a compact operator, I + S is injective, I is the identity operator, A is not
boundedly invertible, and an optimal regularizer is constructed for A. The optimal
regularizer is constructed using the results of the paper MR 40#5130.

1. Introduction

Deconvolution problem consists of solving equation of the form

(1.1) ku :=

∫ t

0

k(t − s)u(s) ds := k ? u = f(t), 0 ≤ t ≤ T,

where k(t), t ≥ 0, is a kernel of linear integral equation (1.1), k?u is the convolution.
It is important in many engineering applications, in physics, and other areas. There
is a vast literature on deconvolution methods, see, for example, [6].

If the operator k in (1.1) is considered as an operator on X := L∞(0, T ), and
∫ T

0
|k(t)| dt < ∞, then k is not boundedly invertible, so problem (1.1) is ill-posed.

Assume that the data f are noisy: fδ is given, such that ||f − fδ|| ≤ δ. In this
case it is natural to seek an approximate solution of equation (1.1) in the class
Qδ := {u ∈ X : ||ku− fδ|| ≤ δ}. However, for ill-posed equation (1.1) an arbitrary
element uδ ∈ Qδ cannot be taken as an approximate solution to (1.1), since uδ is
not continuous with respect to δ in general. In order to select possible solutions
one needs to use a priori information (usually available) about the solution, which
may be of a quantitative or qualitative nature.

The usage of qualitative a priori information makes it possible to narrow the
class of solutions, for example, to a compact set, so that the problem becomes stable
under small changes in the data. This leads to a concept of a quasisolution [8].
Various algorithms for approximate determination of quasisolutions were studied
in [8].

1



2

A priori information of a qualitative nature (for example, smoothness of the
solution) generates different approaches. The one which is used often is varia-

tional regularization [20], [10], which allows one to construct stable approximate
solutions to ill-posed problems by means of a stabilizing functional. The varia-
tional method has been extensively developed in [4], [3], and certain a priori and
a posteriori choices of a regularization parameter ε = ε(δ) have been designed and
implemented [9],[2].

One can also find approximate solutions to (1.1) by iterations (see [21], [1]),
taking xn = R(fδ, xn−1, ..., xn−k), where k ≤ n. For these solutions to be stable
under small changes of the data, the iteration number n = n(δ) yielding xn must
depend on the δ suitably.

Other important techniques in theory of ill-posed problems give regularizing op-
erators by using Fourier, Laplace, Mellin, and other integral transforms, statistical
regularization, and the dynamical systems method (DSM) [12], [13]).

In [14] some general new approaches are proposed for solving an ill-posed decon-
volution problem. One of these approaches is based on the following idea. Assume
that the operator k in (1.1) can be decomposed into a sum k := A + B, where the
operator A−1B := S is compact in the Banach space X, in which k acts, and I +S

is boundedly invertible. By the Fredholm alternative, it is equivalent to assuming
that N (I + S) = {0}, where N (A) is the null space of A. In this case I + S is an
isomorphism of X onto X, R(A) = R(k), where R(A) is the range of the operator
A, and

(1.2) ku = A(I + S)u = fδ .

If a regularizer for A is known, then (1.2) can be solved stably by the scheme

(1.3) uδ = (I + S)−1R(δ)fδ ,

and

(1.4) ||u− uδ|| → 0 as δ → 0.

Since I + S is an isomorphism, the error ||v − vδ|| of the approximation of the
solution of the equation Av = fδ by the formula vδ = R(δ)fδ is of the same order
as ||uδ−u||. In this paper (see sections 2 and 3) we show that the proposed method
is practically efficient and works better than the variational regularization.

Theoretically the proposed method is optimal on the class of the data defined as
a triple {δ, fδ , M2}, where f ∈ C2(0, T ), ||f ′′|| ≤ M2, and f is otherwise arbitrary,
fδ ∈ L∞(0, T ) and ||f − fδ || ≤ δ and fδ is otherwise arbitrary.

The operator R(δ), defined in (2.3) and originally proposed in [10] for stable
numerical differentiation, yields an optimal estimate of f ′ in L∞(0, T )−norm in
the following sense:

inf
T

sup
{fδ : ||f−fδ||≤δ, ||f ||≤M2}

||Tfδ − f ′|| ≥ (2M2δ)
1/2,

where the infimum is taken over all, linear and non-linear, operators T : X → X,
X = L∞(0, T ), the supremum is taken over all f and fδ subject to the conditions
f ∈ C2(0, T ), ||f ′′|| ≤ M2, ||f − fδ|| ≤ δ, and

||R(δ)fδ − f ′|| ≤ (2M2δ)
1/2,

(see e.g., [16],[17], [14]).



3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Figure 1

f
exact

(t)
f
delta

(t)

This argument shows that our ”deconvolution” method for stable solution of
(1.1) is optimal on the above data set: the operator R(δ) gives an optimal (on the
above data set) approximation of f ′. Inversion of an isomorphism I + S, where S

is a compact operator, can be done very accurately by a projection method, for
example, so that the total error of the solution is of the same order as the error
obtained by applying R(δ).

2. The case k(t) ∈ C1(0, T )

Let k(t) ∈ C1(0, T ) and k(0) 6= 0. Then without loss of generality one can take
k(0) = 1. As in [14], write (1.1) as

(2.1) ku =

∫ t

0

u(s) ds +

∫ t

0

[k(t − s) − 1]u(s) := Au + Bu = f.

Assume that f(x) is given by its δ-approximation, i.e. one knows fδ(x) such that
||f − fδ ||X ≤ δ. In the experiments of this section δ = 0.1. Let A−1B := S. Then

(2.2) ku = A(I + S)u = f.

Stable inversion of A is equivalent to stable numerical differentiation of noisy data,
and therefore as a regularizer R(δ)fδ for A one can use (see [11],[17],[18], [19], and
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also [15],[16])

(2.3) R(δ)fδ :=
fδ(t + h(δ)) − fδ(t − h(δ))

2h(δ)
,

with h(δ) =
(

2δ
M2

)1/2

, ||f ′′||L∞

(0,T)
≤ M2. Hence

(2.4) (I + S)uδ = R(δ)fδ,

where S is a Volterra operator: Suδ =
∫ t

0
k′(t − s)uδ(s) ds. To test numerical

efficiency of the above deconvolution algorithm, we take

(2.5) k(y) = exp(ay), f(t) =
(b + a)(exp(at) − cos(bt)) + (b − a) sin(bt)

a2 + b2
.

Then equation (1.1) has the exact solution:

(2.6) uorig(t) = sin(bt) + cos(bt).

The graphs of f and its δ-approximation, fδ , for T = 1, a = 1, b = 2π, are pre-
sented in Figure 1. The perturbation was generated as a sum of five sinusoids with
various periods and amplitudes in such a way that ||f − fδ ||X ≤ 0.1. For δ = 0.1

and for the above choice of f , T , a, and b, one has h(δ) =
(

2δ
M2

)1/2

= 0.1253. Since

in practice often only an estimate for M2 may be available, our first experiment was
done with the approximate value of h(δ), namely h = 0.105. The goal of the first
experiment was to compare the results obtained by the deconvolution method sug-
gested in [14] and by the variational regularization with a choice of the parameter
by the Morozov discrepancy principle. The integral in (1.1) was calculated by the
corrected trapezoid formula (see [7]) with the number of node points n = 200 on
the interval [0, 1]. The graphs of udisc(t) and udeconv(t) as well as the graph of the
original solution, uorig(t), for h(δ) = 0.105 and n = 200 are given in Figure 2. One

can see from the picture that method [14] provides higher quality of reconstruction.

Table 1.

t uexact(t) udisc(t) udeconv(t)

0.05 1.26007351067010 0.88613219081253 1.61104047434242
0.15 1.39680224666742 0.77345683250358 1.16771020714854
0.25 1.00000000000000 0.78531546607804 0.97567292365993
0.35 0.22123174208247 0.32264819143761 0.46901890046136
0.45 -0.64203952192021 -0.01522580641369 -0.94010917284100
0.55 -1.26007351067010 -0.72058597578420 -1.39931254313538
0.65 -1.39680224666742 -0.65363525334725 -1.13246945274454
0.75 -1.00000000000000 -0.84181827797783 -1.26012127085008
0.85 -0.22123174208247 -0.48659287989254 -0.24854842261471
0.95 0.64203952192021 -0.25478764331776 0.99713489435843
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Table 1 allows one to analyze the computed values of udisc(t) and udeconv(t) for
h(δ) = 0.1 and n = 10. The regularization parameter for the variational regulariza-
tion calculated by the Morozov discrepancy principle, εdisc, is equal to 0.0275 for
our particular fδ. The functions udisc(t) and udeconv(t) approximate the exact
solution uorig(t) with the relative errors δdisc = 0.5216 and δdeconv = 0.2470,

respectively, for n = 10.

Table 2.

n δdisc δdeconv

10 0.52160739359373 0.24703402714545

50 0.47882066139400 0.29886579484582

100 0.49421933901812 0.29887532874922

The deconvolution procedure [14] is applicable when the constant Ma, a > 1 is

known. Here Ma is the bound on the f (a), a > 0 is a real number, and f (a) is
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the (fractional order) derivative of f (see [16] for details). Figures 3-6 show the
dependence of the quality of calculations provided by the deconvolution technique
for different values of h(δ) with the same fδ that is given in Figure 1. The level of
reconstruction is acceptable for all values of h(δ) ∈ (0.09, 0.3), but the best quality
is attained for the near-optimal values: h(δ) = 0.1 and h(δ) = 0.2. Outside the
interval (0.09, 0.3) the reconstruction by the variational regularization works better
because h(δ) is away from its optimal value.

Table 2 contains relative errors, δdisc and δdeconv, for values of n = 10, 50, 100.
In both cases the relative errors are not decaying further as n increases, because
the major component in these errors come from the noise level, and not from the
error of the computational methods.

3. Kernel of the type k(t) = tγ−1

Γ(γ)
+ m(t), 0 < γ < 1, m(t) ∈ C1

In this section we solve (1.1) with the kernel k(t) of the form

(3.1) k(t) =
tγ−1

Γ(γ)
+ m(t), 0 < γ < 1, m(t) ∈ C1

As in [14], write (1.1) as

(3.2) ku := Au + Bu = f,
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where

(3.3) Au :=
tγ−1

Γ(γ)
? u, Bu := m ? u.

One has ([5], pp.117-118) A−1f = 1
Γ(1−γ)

∫ t

0
f ′(s)

(t−s)γ ds. Since the right-hand side f

is given by its δ-approximation fδ, ||f−fδ ||X ≤ δ, we replace A−1 by the regularizer
R1(δ) (see [14]):

(3.4) R1(δ)fδ :=
1

Γ(1 − γ)

∫ t

0

(R(δ)fδ)(s)

(t − s)γ
ds.

The operator R(δ) in (3.4) is defined by formula (2.3) with h = 0.12. One gets

(3.5) (I + S)uδ = R1(δ)fδ .

and

(3.6) Suδ := A−1Buδ =
1

Γ(1 − γ)

∫ t

0

m(0)uδ(s) +
∫ s

0
m′(s − p)uδ(p)dp

(t − s)γ
ds.

The goal of the experiment was to compare two numerical methods for solving
(1.1)-(3.1): deconvolution method (3.5)-(3.6) and variational regularization with a
choice of the parameter by the discrepancy principle.

The function

f(t) =
tγ

Γ(1 + γ)

(

1 −
2t2

(1 + γ)(2 + γ)

)

+
t3

3

(

1 −
t2

10

)

, t ∈ [0, 1],
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was chosen as the solution to direct problem (1.1)-(3.1) with m(t) = t2 and the
model function uexact(t) = 1 − t2. Then for the numerical tests the noisy function
fδ, ||f − fδ ||X ≤ δ, δ = 0.1, was used. The graphs of f and fδ for γ = 0.1 are given
in Figures 7 and 8.

Table 3.

t uexact(t) udisc(t) udeconv(t)

0.05 0.99000000000000 0.93361656127658 1.00281244943820
0.15 0.96000000000000 0.85983757148008 0.98540317766041
0.25 0.91000000000000 0.78772680932067 0.93442776030698
0.35 0.84000000000000 0.71362820985483 0.85896131974899
0.45 0.75000000000000 0.63504318796224 0.76170936024357
0.55 0.64000000000000 0.55028612377340 0.64396777696250
0.65 0.51000000000000 0.45824705747747 0.50654835394340
0.75 0.36000000000000 0.35823345537370 0.35004574315540
0.85 0.19000000000000 0.24979168725846 0.17493299888351
0.95 0 0.13214536398250 -0.01840021170081
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Figures 10-12 illustrate the numerical performance of method (3.5)-(3.6) and
variational regularization for γ = 0.1. The solutions evaluated by formulas (3.5)-
(3.6) and by variational regularization for n = 10 and γ = 0.1 are also presented in
Table 3.

The results obtained for our particular test problem show that for small values
of γ the deconvolution approach is superior to variational regularization both in
terms of accuracy and stability. However as γ is getting bigger, the efficiency of
the deconvolution method (as well as the efficiency of variational regularization) is
getting worse. This is happening because when γ is close to 1, the ill-posedness of
problem (1.1)-(3.1) grows due to the errors in calculations of the singular integral.
One can compare Figures 9-12 and 13-16. Moreover, as γ changes from 0.1 to 0.9,
method (3.5)-(3.6) becomes very sensitive to slight variations of h(δ). To illustrate
this phenomena, we present the dependence of relative errors and discrepancies on
h(δ) for γ = 0.1 and γ = 0.5 in Figures 17 and 18. For γ = 0.1 the relative error
of the deconvolution method remains less than 10% when h(δ) ∈ (0.05, 0.12), while
for g = 0.5 the relative error is only small for h = 0.1.

Finally, it is important to mention that CPU time for both methods, (3.5)-(3.6)
and variational regularization, is approximately the same and it is very small: about
3-4 milliseconds for n = 200.

Conclusion. The paper presents numerical results of the implementation of the
deconvolution method developed by AGR and presented together with other results



10

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

Deconvolution method for gamma=0.1: errors vs. h(delta)

Figure 17

relative error
discrepancy

0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12

14

Deconvolution method for gamma=0.5: errors vs. h(delta)

Figure 18

relative error
discrepancy

in [14]. The method is shown to be optimal in the sense explained in Section 1.
The numerical results confirm the theoretical results on which the method is based.
It is shown that the method is more accurate than the variational regularization
method with the regularization parameter chosen by the discrepancy method.
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