Quantum cavities or dots have markedly different properties depending on
whether their classical counterparts are chaotic or not. Connecting a
superconductor to such a cavity leads to notable proximity effects,
particularly the appearance, predicted by random matrix theory, of a hard gap
in the excitation spectrum of quantum chaotic systems. Andreev billiards are
interesting examples of such structures built with superconductors connected to
a ballistic normal metal billiard since each time an electron hits the
superconducting part it is retroreflected as a hole (and vice-versa). Using a
semiclassical framework for systems with chaotic dynamics, we show how this
reflection, along with the interference due to subtle correlations between the
classical paths of electrons and holes inside the system, are ultimately
responsible for the gap formation. The treatment can be extended to include the
effects of a symmetry breaking magnetic field in the normal part of the
billiard or an Andreev billiard connected to two phase shifted superconductors.
Therefore we are able to see how these effects can remold and eventually
suppress the gap. Furthermore the semiclassical framework is able to cover the
effect of a finite Ehrenfest time which also causes the gap to shrink. However
for intermediate values this leads to the appearance of a second hard gap - a
clear signature of the Ehrenfest time.Comment: Refereed version. 23 pages, 19 figure