139 research outputs found

    Universal Scaling of Strong-Field Localization in an Integer Quantum Hall Liquid

    Full text link
    We study the Landau level localization and scaling properties of a disordered two-dimensional electron gas in the presence of a strong external magnetic field. The impurities are treated as random distributed scattering centers with parameterized potentials. Using a transfer matrix for a finite-width strip geometry, we calculate the localization length as a function of system size and electron energy. The finite-size localization length is determined by calculating the Lyapunov exponents of the transfer matrix. A detailed finite-size scaling analysis is used to study the critical behavior near the center of the Landau bands. The influence of varying the impurity concentration, the scattering potential range and its nature, and the Landau level index on the scaling behavior and on the critical exponent is systematically investigated. Particular emphasis is put on studying the effects of finite range of the disorder potential and Landau level coupling on the quantum localization behavior. Our numerical results, which are carried out on systems much larger than those studied before, indicate that pure δ\delta-function disorder in the absence of any Landau level coupling gives rise to non-universal localization properties with the critical exponents in the lowest two Landau levels being substantially different. Inclusion of a finite potential range and/or Landau level mixing may be essential in producing universality in the localization.Comment: 28 pages, Latex, 17 figures (available upon request), #phd0

    Thermal Density Functional Theory in Context

    Full text link
    This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. We close by discussing some key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT's strengths as a consistent and general framework.Comment: Submitted to Spring Verlag as chapter in "Computational Challenges in Warm Dense Matter", F. Graziani et al. ed

    The nuclear energy density functional formalism

    Full text link
    The present document focuses on the theoretical foundations of the nuclear energy density functional (EDF) method. As such, it does not aim at reviewing the status of the field, at covering all possible ramifications of the approach or at presenting recent achievements and applications. The objective is to provide a modern account of the nuclear EDF formalism that is at variance with traditional presentations that rely, at one point or another, on a {\it Hamiltonian-based} picture. The latter is not general enough to encompass what the nuclear EDF method represents as of today. Specifically, the traditional Hamiltonian-based picture does not allow one to grasp the difficulties associated with the fact that currently available parametrizations of the energy kernel E[g,g]E[g',g] at play in the method do not derive from a genuine Hamilton operator, would the latter be effective. The method is formulated from the outset through the most general multi-reference, i.e. beyond mean-field, implementation such that the single-reference, i.e. "mean-field", derives as a particular case. As such, a key point of the presentation provided here is to demonstrate that the multi-reference EDF method can indeed be formulated in a {\it mathematically} meaningful fashion even if E[g,g]E[g',g] does {\it not} derive from a genuine Hamilton operator. In particular, the restoration of symmetries can be entirely formulated without making {\it any} reference to a projected state, i.e. within a genuine EDF framework. However, and as is illustrated in the present document, a mathematically meaningful formulation does not guarantee that the formalism is sound from a {\it physical} standpoint. The price at which the latter can be enforced as well in the future is eventually alluded to.Comment: 64 pages, 8 figures, submitted to Euroschool Lecture Notes in Physics Vol.IV, Christoph Scheidenberger and Marek Pfutzner editor

    WW Production Cross Section and W Branching Fractions in e+e- Collisions at 189 GeV

    Get PDF
    From a data sample of 183 pb^-1 recorded at a center-of-mass energy of roots = 189 GeV with the OPAL detector at LEP, 3068 W-pair candidate events are selected. Assuming Standard Model W boson decay branching fractions, the W-pair production cross section is measured to be sigmaWW = 16.30 +- 0.34(stat.) +- 0.18(syst.) pb. When combined with previous OPAL measurements, the W boson branching fraction to hadrons is determined to be 68.32 +- 0.61(stat.) +- 0.28(syst.) % assuming lepton universality. These results are consistent with Standard Model expectations.Comment: 22 pages, 5 figures, submitted to Phys. Lett.

    Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO): Study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III)

    Get PDF
    Background: Perinatal asphyxia and resulting hypoxic-ischemic encephalopathy is a major cause of death and long-term disability in term born neonates. Up to 20,000 infants each year are affected by HIE in Europe and even more in regions with lower level of perinatal care. The only established therapy to improve outcome in these infants is therapeutic hypothermia. Allopurinol is a xanthine oxidase inhibitor that reduces the production of oxygen radicals as superoxide, which contributes to secondary energy failure and apoptosis in neurons and glial cells after reperfusion of hypoxic brain tissue and may further improve outcome if administered in addition to therapeutic hypothermia. Methods: This study on the effects of ALlopurinol in addition to hypothermia treatment for hypoxic-ischemic Brain Injury on Neurocognitive Outcome (ALBINO), is a European double-blinded randomized placebo-controlled parallel group multicenter trial (Phase III) to evaluate the effect of postnatal allopurinol administered in addition to standard of care (including therapeutic hypothermia if indicated) on the incidence of death and severe neurodevelopmental impairment at 24 months of age in newborns with perinatal hypoxic-ischemic insult and signs of potentially evolving encephalopathy. Allopurinol or placebo will be given in addition to therapeutic hypothermia (where indicated) to infants with a gestational age 65 36 weeks and a birth weight 65 2500 g, with severe perinatal asphyxia and potentially evolving encephalopathy. The primary endpoint of this study will be death or severe neurodevelopmental impairment versus survival without severe neurodevelopmental impairment at the age of two years. Effects on brain injury by magnetic resonance imaging and cerebral ultrasound, electric brain activity, concentrations of peroxidation products and S100B, will also be studied along with effects on heart function and pharmacokinetics of allopurinol after iv-infusion. Discussion: This trial will provide data to assess the efficacy and safety of early postnatal allopurinol in term infants with evolving hypoxic-ischemic encephalopathy. If proven efficacious and safe, allopurinol could become part of a neuroprotective pharmacological treatment strategy in addition to therapeutic hypothermia in children with perinatal asphyxia. Trial registration: NCT03162653, www.ClinicalTrials.gov, May 22, 2017

    Search for Leptoquarks in Electron-Photon Scattering at sqrt(s_ee) up to 209 GeV at LEP

    Full text link
    Searches for first generation scalar and vector leptoquarks, and for squarks in R-parity violating SUSY models with the direct decay of the squark into Standard Model particles, have been performed using e+e- collisions collected with the OPAL detector at LEP at e+e- centre-of-mass energies between 189 and 209 GeV. No excess of events is found over the expectation from Standard Model background processes. Limits are computed on the leptoquark couplings for different values of the branching ratio to electron-quark final states.Comment: 23 pages, 5 figures, Submitted to Phys. Lett.

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF
    Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.Naturali
    corecore