16 research outputs found

    Oxyde de tungstÚne et de molybdÚne fonctionnalisés par des composés organiques comme catalyseur hétérogÚne performant pour la coupure oxydante de l'acide oléique en acides carboxyliques

    Get PDF
    Les huiles et corps gras d’origines vĂ©gĂ©tales ou animales ont rĂ©cemment attisĂ© un grand intĂ©rĂȘt comme matĂ©riel de base dans les industries olĂ©ochimiques. Cette attention ne provient pas uniquement des raisons environnementales mais aussi de l’avantage Ă©conomique de ces nouveaux produits. Les acides gras insaturĂ©s, composants principaux des lipides, peuvent ĂȘtre oxydĂ©s pour la production de mono- ou de di-acides carboxyliques ; ces derniers sont Ă  la base d’une grande variĂ©tĂ© de matĂ©riaux dans de nombreuses industries. Ce procĂ©dĂ© d’oxydation est nommĂ© « clivage oxydatif », en effet, durant la rĂ©action, une double liaison carbone-carbone est brisĂ©e. L’exemple le plus reprĂ©sentatif est l’acide azĂ©laique, C9 contenant une double fonction acide carboxylique - un produit Ă  haute valeur ajoutĂ©e qui est obtenu Ă  partir de l’acide olĂ©ique. Actuellement, cette rĂ©action, en industrie, est effectuĂ©e par ozonolyse, or, ces rĂ©actions ont rĂ©cemment Ă©tĂ© classĂ©es comme risquĂ© dĂ» aux problĂšmes associĂ©s Ă  l’utilisation d’ozone. Cependant, l’utilisation d’un oxydant plus doux requiert l’utilisation d’un catalyseur. Dans les travaux prĂ©sentĂ©s, nous avons dĂ©veloppĂ© un catalyseur hĂ©tĂ©rogĂšne innovant Ă  partir d’oxydes de tungstĂšne et de molybdĂšne pour la coupure oxydante de l’acide olĂ©ique utilisant le peroxyde d’hydrogĂšne comme oxydant. Afin de trouver un catalyseur performant, diffĂ©rents catalyseurs ont Ă©tĂ© prĂ©parĂ©s et testĂ©s, tels que des oxydes de tungstĂšne mĂ©soporeux, possĂ©dant une trĂšs grande surface spĂ©cifique supportĂ©s par de l’alumine gamma, des nanoparticules (NPs) de trioxyde de tungstĂšne de structures diffĂ©rentes (hydratĂ© ou anhydre), de peroxyde de tungstĂšne, d’oxyde de molybdĂšne, mais aussi d’amas de polyoxotungstates (POTs) sous forme de structure de Keggin. Alors que l’utilisation de catalyseur homogĂšne a Ă©tĂ© largement reportĂ©e pour cette rĂ©action, les travaux effectuĂ©s sur des catalyseurs hĂ©tĂ©rogĂšnes sont moins rapportĂ©s. En effet, l’efficacitĂ© des catalyseurs solides est moindre compte tenu du plus faible nombre de sites actifs en contact avec la phase liquide et donc le substrat ; or pour les catalyseurs homogĂšnes cette surface de contact est optimum. Pour s’affranchir de cet obstacle dans ces travaux, nous avons choisi d’utiliser des catalyseurs prĂ©sentant des tensioactifs Ă  partir de molĂ©cules organiques. Ces catalyseurs permettent d’augmenter les propriĂ©tĂ©s hydrophobes/hydrophiles de la surface de la nanoparticule, et aussi d’amĂ©liorer la compatibilitĂ© entre la surface du catalyseur solide, le substrat de la rĂ©action - l’acide olĂ©ique - et l’oxydant en phase aqueuse. Pour remplir cet objectif, plusieurs cations d’amines quaternaire ont Ă©tĂ© utilisĂ©s dans la synthĂšse, tel que le l'hexadĂ©cyltrimĂ©thylammonium (CTA+), le Ă©tramĂ©thylammonium (TMA+), le tĂ©trapropylammonium (TPA+) et le tĂ©trabutylammonium (TBA+). Nous avons dĂ©veloppĂ© une approche simple et Ă©coresponsable pour la synthĂšse et le greffage de tensioactifs de nanoparticules d’oxyde de tungstĂšne et de molybdĂšne Ă  partir de la dissolution oxydante de poudre micromĂ©trique de tungstĂšne et de molybdĂšne mĂ©tallique. Par la suite, avec quelques modifications dans l’approche ainsi que l’utilisation de sels d’amine quaternaire possĂ©dant une chaine alcane plus importante lors de la synthĂšse, nous avons rĂ©ussi Ă  mettre au point une nouvelle mĂ©thode de synthĂšse pour la prĂ©paration de POTs hybride, organique-inorganique. En termes de rĂ©action catalytique, c’est la premiĂšre fois que l’utilisation de POT comme catalyseurs hĂ©tĂ©rogĂšnes pour des rĂ©actions d’oxydation d’acides gras insaturĂ©s est rapportĂ©e. Le catalyseur synthĂ©tisĂ© prĂ©sente gĂ©nĂ©ralement une excellente activitĂ©, comparĂ© aux autres catalyseurs hĂ©tĂ©rogĂšnes rapportĂ©s. Une conversion complĂšte de l’acide olĂ©ique initial avec un rendement maximum pour le diacide espĂ©rĂ© (acide azĂ©laique) de 80% a pu ĂȘtre atteint en optimisant la quantitĂ© d’amine quaternaire cationique Ă  la surface du catalyseur. GrĂące Ă  la prĂ©sence de molĂ©cules organiques comme tensioactifs, ce catalyseur efficace en solution aqueuse ne prĂ©sente pas de lixiviation significative. De plus, il est facilement rĂ©cupĂ©rable et peut ĂȘtre rĂ©utilisĂ© sans perte d’activitĂ© significative jusqu’à quatre cycles.Oils and fats of vegetable and animal origin have recently attracted a growing interest as renewable raw materials in oleochemical industries. This attention arises from not only the environmental reasons, but also economic ones. Unsaturated fatty acids (UFAs), as the constituent of lipids, can be oxidized to produce mono- and dicarboxylic acids which are applicably valuable materials in different industries. This oxidation process is so-called oxidative cleavage, since during the reaction carbon-carbon double bond(s) get cleaved. The most striking instance is production of azelaic acid, a valuable C9 diacid, from oleic acid (C18:1). Currently, this reaction is carried out in industry via ozonolysis, which, nowadays, has been converted to a controversial challenge due to the hazardous problems associated with use of ozone. Employing an eco-friendlier oxidant requires an active catalyst to be employed, as well. In this research, we have developed advanced heterogeneous catalysts based on tungsten and molybdenum oxides for oxidative cleavage of oleic acid with hydrogen peroxide as oxidant. To find a highly efficient catalyst, different catalysts were prepared and tried including high surface area mesoporous tungsten oxide supported on Îł-alumina, nanoparticles (NPs) of different structures of tungsten trioxide (hydrated and anhydrous), tungsten peroxide, and molybdenum oxide, as well as Keggin clusters of polyoxotungstates (POTs). While employing homogeneous catalysts in this reaction has been widely reported, the works on the heterogeneous catalysts are very rare, most probably due to the poor reactant/solid catalyst contact in liquid-phase reactions of lipids resulting in much lower catalytic efficiency of solid catalysts compared to the homogeneous ones. To tackle this obstacle in this research, we leveraged the strategy of organo-functionalization of the solid catalyst’s surface, to not only tune the hydrophobicity/hydrophilicity properties of the surface, but also improve the compatibility of the solid catalysts with the organic substrate, oleic acid, and the aqueous oxidant. For this purpose, different quaternary ammonium cations were employed in the synthesis including cetyltrimethylammonium (CTA+), tetramethylammonium (TMA+), tetrapropylammonium (TPA+), and tetrabutylammonium (TBA+). We have developed a green and straightforward approach for the synthesis and organo-functionalization of tungsten and molybdenum oxide NPs based on oxidative dissolution of micrometer-scale bare W and Mo powders. Interestingly, with some slight modifications in this approach and using larger quaternary ammonium salts in the synthesis we have succeeded to present a novel synthesis method for preparation of hybrid organic-inorganic POTs. In terms of catalytic reaction, application of heterogeneous POT catalysts in oxidation of UFAs has been reported for the first time in this work. The synthesized catalysts, generally, exhibited excellent activity compared to the reported heterogeneous ones. Full conversion of the initial oleic acid, with the highest yield of production of the desired diacid (azelaic acid) ~80 %, was achieved by optimization of the amount of the quaternary ammonium cation on the catalyst’s surface. Thanks to the organo-functionalization, these water-tolerant catalysts exhibited no significant leaching, as well as convenient recovery and steady reuse without noticeable decrease in activity, at least up to four cycles

    Synthesis, Organo-Functionalization, and Catalytic Properties of Tungsten Oxide Nanoparticles As Heterogeneous Catalyst for Oxidative Cleavage of Oleic Acid As a Model Fatty Acid into Diacids

    No full text
    A series of tungsten oxide nanoparticles (NPs) has been synthesized via a green and straightforward approach exploiting bare tungsten powder as a precursor. The synthesized NPs were further organo-functionalized by cetyltrimethylammonium bromide (CTAB) in order to adjust their surface state and enhance their compatibility with biphasic oxidation of vegetable oils with H<sub>2</sub>O<sub>2</sub>. Simply, different structures of tungsten oxide were observed, which were characterized by XRD, FTIR, TGA, TEM, N<sub>2</sub> adsorption/desorption isotherms, and zeta potential analysis. All the synthesized nanocatalysts could fully convert oleic acid, and the highest yield of production of the desired diacid (azelaic acid), ∌80%, was achieved by optimization of the CTA<sup>+</sup> amount on the nanocatalyst’s surface, which show excellent activity compared to the reported heterogeneous works. Thanks to the organo-functionalization, this water-tolerant catalyst exhibited no significant leaching, as well as convenient recovery and steady reuse without a noticeble decrease in activity, at least up to four cycles
    corecore