23 research outputs found

    Social interactions between captive adult male and infant lowland gorillas: Implications regarding kin selection and zoo management

    Full text link
    Interactions between unrelated and related silverback-infant dyads are compared in an attempt to assess the influence that kinship may have on male parental behavior. Observational data were collected on each member of two silverback-infant dyads, in two separate enclosures at the Lincoln Park Zoo in Chicago, IL. The silverback was the father of the infant in one dyad, and unrelated to the infant in the other. Each infant was responsible for initiating most of the encounters with its respective group silverback. However, based on the frequency and duration of interactions, there is a significantly higher degree of affiliation and tolerance within the silverback-offspring dyad. Furthermore, the unrelated infant was the recipient of more than 40% of the agonistic behaviors exhibited by the silverback, whereas no such encounters were recorded within the related dyad. Although alternative explanations must be considered, these findings are consistent with kin selection theory, are similar to observations documented for wild mountain gorillas, and provide uncommon comparative data on adult male interactions with related and unrelated infants. In addition, this study offers behavioral information relevant to the management of captive gorillas, which often requires the introduction of immatures into non-natal groups. Zoo Biol 18:53–62, 1999. © 1999 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34914/1/6_ftp.pd

    The World Spider Trait database: a centralized global open repository for curated data on spider traits

    Get PDF
    Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology.Fil: Pekár, Stano. Masaryk University; República ChecaFil: Wolff, Jonas O. University of Greifswald; AlemaniaFil: Cernecká, L'udmila. Slovak Academy of Sciences; ArgentinaFil: Birkhofer, Klaus. Brandenburgische Technische Universität Cottbus; AlemaniaFil: Mammola, Stefano. University of Helsinki; FinlandiaFil: Lowe, Elizabeth C.. Macquarie University; AustraliaFil: Fukushima, Caroline S.. University of Helsinki; FinlandiaFil: Herberstein, Marie E.. Macquarie University; AustraliaFil: Kucera, Adam. Masaryk University; República ChecaFil: Buzatto, Bruno A.. University of Western Australia; AustraliaFil: Djoudi, El Aziz. Brandenburgische Technische Universität Cottbus; AlemaniaFil: Domenech, Marc. Universidad de Barcelona; EspañaFil: Enciso, Alison Vanesa. Fundación Protectora Ambiental Planadas Tolima; ColombiaFil: Piñanez Espejo, Yolanda María Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Febles, Sara. No especifíca;Fil: García, Luis F. Universidad de la República; UruguayFil: Gonçalves Souza, Thiago. Universidad Federal Rural Pernambuco; BrasilFil: Isaia, Marco. Università di Torino; ItaliaFil: Lafage, Denis. Universite de Rennes I; FranciaFil: Líznarová, Eva. Masaryk University; República ChecaFil: Macías Hernández, Nuria. Universidad de La Laguna; EspañaFil: Fiorini de Magalhaes, Ivan Luiz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Malumbres Olarte, Jagoba. Universidade Dos Açores; PortugalFil: Michálek, Ondrej. Masaryk University; República ChecaFil: Michalik, Peter. ERNST MORITZ ARNDT UNIVERSITÄT GREIFSWALD (UG);Fil: Michalko, Radek. No especifíca;Fil: Milano, Filippo. Università di Torino; ItaliaFil: Munévar, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; ArgentinaFil: Nentwig, Wolfgang. University of Bern; SuizaFil: Nicolosi, Giuseppe. Università di Torino; ItaliaFil: Painting, Christina J. No especifíca;Fil: Pétillon, Julien. Universite de Rennes I; FranciaFil: Piano, Elena. Università di Torino; ItaliaFil: Privet, Kaïna. Universite de Rennes I; FranciaFil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Ramos, Cândida. No especifíca;Fil: Rezác, Milan. No especifíca;Fil: Ridel, Aurélien. Universite de Rennes I; FranciaFil: Ruzicka, Vlastimil. No especifíca;Fil: Santos, Irene. No especifíca;Fil: Sentenská, Lenka. Masaryk University; República ChecaFil: Walker, Leilani. No especifíca;Fil: Wierucka, Kaja. Universitat Zurich; SuizaFil: Zurita, Gustavo Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Cardoso, Pedro. No especifíca

    The World Spider Trait database : a centralised global open repository for curated data on spider traits

    Get PDF
    Publisher Copyright: © The Author(s) 2021. Published by Oxford University Press.Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.Peer reviewe

    Ancient Plasmodium genomes shed light on the history of human malaria

    Get PDF
    Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia bce, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.This project was funded by the National Science Foundation, grants BCS-2141896 and BCS-1528698; the European Research Council (ERC) under the European Union’s Horizon 2020 programme, grants 851511-MICROSCOPE (to S. Schiffels), 771234-PALEoRIDER (to W.H.) and starting grant 805268-CoDisEASe (to K.I.B.); and the ERC starting grant Waves ERC758967 (supporting K. Nägele and S.C.). We thank the Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean for supporting M. Michel, E. Skourtanioti, A.M., R.A.B., L.C.B., G.U.N., N.S., V.V.-M., M. McCormick, P.W.S., C.W. and J.K.; the Kone Foundation for supporting E.K.G. and A.S.; and the Faculty of Medicine and the Faculty of Biological and Environmental Sciences at the University of Helsinki for grants to E.K.G. A.S. thanks the Magnus Ehrnrooth Foundation, the Sigrid Jusélius Foundation, the Finnish Cultural Foundation, the Academy of Finland, the Life and Health Medical Foundation and the Finnish Society of Sciences and Letters. M.C.B. acknowledges funding from: research project PID2020-116196GB-I00 funded by MCIN/AEI/10.13039/501100011033; the Spanish Ministry of Culture; the Chiang Ching Kuo Foundation; Fundación Palarq; the EU FP7 Marie Curie Zukunftskolleg Incoming Fellowship Programme, University of Konstanz (grant 291784); STAR2-Santander Universidades and Ministry of Education, Culture and Sports; and CEI 2015 project Cantabria Campus Internacional. M.E. received support from the Czech Academy of Sciences award Praemium Academiae and project RVO 67985912 of the Institute of Archaeology of the Czech Academy of Sciences, Prague. This work has been funded within project PID2020-115956GB-I00 ‘Origen y conformación del Bronce Valenciano’, granted by the Ministry of Science and Innovation of the Government of Spain, and grants from the Canadian Institutes for Health Research (MZI187236), Research Nova Scotia (RNS 2023-2565) and The Center for Health Research in Developing Countries. D.K. is the Canada research chair in translational vaccinology and inflammation. R.L.K. acknowledges support from a 2019 University of Otago research grant (Human health and adaptation along Silk Roads, a bioarchaeological investigation of a medieval Uzbek cemetery). P.O. thanks the Jane and Aatos Erkko Foundation, the Finnish Cultural Foundation and the Academy of Finland. S. Peltola received support from the Emil Aaltonen Foundation and the Ella and Georg Ehrnrooth Foundation. D.C.S.-G. thanks the Generalitat Valenciana (CIDEGENT/2019/061). E.W.K. acknowledges support from the DEEPDEAD project, HERA-UP, CRP (15.055) and the Horizon 2020 programme (grant 649307). M. Spyrou thanks the Elite program for postdocs of the Baden-Württemberg Stiftung. Open access funding provided by Max Planck Society

    American College of Rheumatology Provisional Criteria for Clinically Relevant Improvement in Children and Adolescents With Childhood-Onset Systemic Lupus Erythematosus

    Get PDF
    10.1002/acr.23834ARTHRITIS CARE & RESEARCH715579-59

    Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes

    No full text
    Four unrelated families with the same unbalanced translocation der(4)t(4;11)(p16.2;p15.4) were analyzed. Both of the breakpoint regions in 4p16.2 and 11p15.4 were narrowed to large ∼359-kb and ∼215-kb low-copy repeat (LCR) clusters, respectively, by aCGH and SNP array analyses. DNA sequencing enabled mapping the breakpoints of one translocation to 24 bp within interchromosomal paralogous LCRs of ∼130 kb in length and 94.7% DNA sequence identity located in olfactory receptor gene clusters, indicating nonallelic homologous recombination (NAHR) as the mechanism for translocation formation. To investigate the potential involvement of interchromosomal LCRs in recurrent chromosomal translocation formation, we performed computational genome-wide analyses and identified 1143 interchromosomal LCR substrate pairs, >5 kb in size and sharing >94% sequence identity that can potentially mediate chromosomal translocations. Additional evidence for interchromosomal NAHR mediated translocation formation was provided by sequencing the breakpoints of another recurrent translocation, der(8)t(8;12)(p23.1;p13.31). The NAHR sites were mapped within 55 bp in ∼7.8-kb paralogous subunits of 95.3% sequence identity located in the ∼579-kb (chr 8) and ∼287-kb (chr 12) LCR clusters. We demonstrate that NAHR mediates recurrent constitutional translocations t(4;11) and t(8;12) and potentially many other interchromosomal translocations throughout the human genome. Furthermore, we provide a computationally determined genome-wide “recurrent translocation map.

    Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee

    Get PDF
    BACKGROUND: Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expression profile and orthology in RARRES2 genes are unknown aspects in the biology of this multigene family in primates. Thus; we attempt to describe expression profile and phylogenetic relationship as complementary knowledge in the function of this gene in primates. To do that, we performed A RT-PCR from different tissues obtained during necropsies. Also we tested the hypotheses of positive evolution, purifying selection, and neutrality. And finally a phylogenetic analysis was made between primates RARRES2 protein. RESULTS: RARRES2 transcripts were present in liver, lung, adipose tissue, ovary, pancreas, heart, hypothalamus and pituitary tissues. Expression in kidney and leukocytes were not detectable in either species. It was determined that the studied genes are orthologous. CONCLUSIONS: RARRES2 evolution fits the hypothesis of purifying selection. Expression profiles of the RARRES2 gene are similar in baboons and chimpanzees and are also phylogenetically related

    Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse

    No full text
    Recent genomic profiling of childhood acute lymphoblastic leukemia (ALL) identified a novel high-risk subtype with a gene expression signature resembling Philadelphia chromosome-positive ALL and a poor prognosis (Ph-like ALL). However, the role of inherited genetic variation in Ph-like ALL pathogenesis remains unknown. In a genome-wide association study (GWAS) of 511 ALL cases and 6,661 non-ALL controls, we identified a single susceptibility locus for Ph-like ALL (GATA3, rs3824662, P=2.17×10(−14), odds ratio [OR]=3.85, for Ph-like ALL vs. non-ALL; P=1.05×10(−8), OR=3.25, for Ph-like ALL vs. non-Ph-like ALL) that was independently validated. The rs3824662 risk allele was associated with somatic lesions underlying Ph-like ALL (i.e., CRLF2 rearrangement, JAK mutation, and IKZF1 deletion) and directly influenced GATA3 transcription. Finally, GATA3 SNP genotype was also associated with early treatment response and the risk of ALL relapse. Our results provide insights into interactions between host and tumor genomes and their importance in ALL pathogenesis and prognosis
    corecore