11 research outputs found

    What if SĂŁo Paulo (Brazil) would like to become a renewable and endogenous energy -based megacity?

    No full text

    Pathways for a Brazilian biobased economy: towards optimal utilization of biomass

    Get PDF
    Biofuels, Bioproducts and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd. Biomass is responsible for 25% of the primary energy supply in Brazil. However, future biomass demand will be influenced by many factors. This study evaluates potential pathways for the utilization of biomass in Brazil until 2050, while considering novel biobased sectors (renewable jet fuel and biochemicals), resource competition, and greenhouse gas (GHG) emissions. Whereas other least-cost optimization models assess biobased options to meet energy and chemicals demand in Brazil to a limited extent, this study provides a detailed breakdown of biomass feedstock, including an extensive portfolio of biomass conversion technologies. A least-cost optimization model is used to assess the demand for energy and chemicals, and the competition between biomass and other climate-mitigation measures such as renewable power generation technologies, carbon capture and storage (CCS), and energy efficiency. Varied over the three scenarios, 86–96% of the sustainable biomass supply potential is used. Under more stringent mitigation targets, novel biomass conversion technologies start to play an important role: Biobased electricity production with CCS, jet fuel production from lignocellulosic biomass, and chemicals are partly produced from ethanol and bio-naphtha. The modeling framework provides a transparent view of which type of biomass can be used for which specific purpose. It is therefore an interesting tool for future research, for example to examine the dynamic interaction with demand for land. © 2019 The Authors. Biofuels, Bioproducts and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd

    Effects of Dam-Induced Landscape Fragmentation on Amazonian Ant-Plant Mutualistic Networks

    No full text
    Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal-plant mutualistic networks. © 2013 Society for Conservation Biology
    corecore