13 research outputs found

    WDR34, a candidate gene for non-syndromic rod-cone dystrophy

    Get PDF
    Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.Doctoral funding from the MinistÚre de l'Enseignement Supérieur et de la Recherche; Europe exchange 2018 Erasmus; European Reintegration Grant, Grant/Award Number: PERG04-GA-2008-231125; Fondation de France-Berthe Fouassier; Foundation Fighting Blindness, Grant/Award Number: Grant # CD-CL-0808-0466-CHNO CIC503 recogn; Foundation Voir et Entendre; French Agence Nationale de la Recherche, Grant/Award Numbers: IHU FOReSIGHT: ANR-18-IAHU-0001, LIFESENSES: ANR-10-LABX-65; National Eye Institute [R01EY012910 (EAP), R01EY026904 (KMB/EAP) and P30EY014104 (MEEI core support)], the Foundation Fightin

    LAG3 is not expressed in human and murine neurons and does not modulate α-synucleinopathies.

    Get PDF
    While the initial pathology of Parkinson's disease and other α-synucleinopathies is often confined to circumscribed brain regions, it can spread and progressively affect adjacent and distant brain locales. This process may be controlled by cellular receptors of α-synuclein fibrils, one of which was proposed to be the LAG3 immune checkpoint molecule. Here, we analysed the expression pattern of LAG3 in human and mouse brains. Using a variety of methods and model systems, we found no evidence for LAG3 expression by neurons. While we confirmed that LAG3 interacts with α-synuclein fibrils, the specificity of this interaction appears limited. Moreover, overexpression of LAG3 in cultured human neural cells did not cause any worsening of α-synuclein pathology ex vivo. The overall survival of A53T α-synuclein transgenic mice was unaffected by LAG3 depletion, and the seeded induction of α-synuclein lesions in hippocampal slice cultures was unaffected by LAG3 knockout. These data suggest that the proposed role of LAG3 in the spreading of α-synucleinopathies is not universally valid

    Climate change and One Health

    Get PDF
    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change

    Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial

    Get PDF
    Background Metastatic castration-resistant prostate cancers are enriched for DNA repair gene defects (DRDs) that can be susceptible to synthetic lethality through inhibition of PARP proteins. We evaluated the anti-tumour activity and safety of the PARP inhibitor niraparib in patients with metastatic castration-resistant prostate cancers and DRDs who progressed on previous treatment with an androgen signalling inhibitor and a taxane. Methods In this multicentre, open-label, single-arm, phase 2 study, patients aged at least 18 years with histologically confirmed metastatic castration-resistant prostate cancer (mixed histology accepted, with the exception of the small cell pure phenotype) and DRDs (assessed in blood, tumour tissue, or saliva), with progression on a previous next-generation androgen signalling inhibitor and a taxane per Response Evaluation Criteria in Solid Tumors 1.1 or Prostate Cancer Working Group 3 criteria and an Eastern Cooperative Oncology Group performance status of 0–2, were eligible. Enrolled patients received niraparib 300 mg orally once daily until treatment discontinuation, death, or study termination. For the final study analysis, all patients who received at least one dose of study drug were included in the safety analysis population; patients with germline pathogenic or somatic biallelic pathogenic alterations in BRCA1 or BRCA2 (BRCA cohort) or biallelic alterations in other prespecified DRDs (non-BRCA cohort) were included in the efficacy analysis population. The primary endpoint was objective response rate in patients with BRCA alterations and measurable disease (measurable BRCA cohort). This study is registered with ClinicalTrials.gov, NCT02854436. Findings Between Sept 28, 2016, and June 26, 2020, 289 patients were enrolled, of whom 182 (63%) had received three or more systemic therapies for prostate cancer. 223 (77%) of 289 patients were included in the overall efficacy analysis population, which included BRCA (n=142) and non-BRCA (n=81) cohorts. At final analysis, with a median follow-up of 10·0 months (IQR 6·6–13·3), the objective response rate in the measurable BRCA cohort (n=76) was 34·2% (95% CI 23·7–46·0). In the safety analysis population, the most common treatment-emergent adverse events of any grade were nausea (169 [58%] of 289), anaemia (156 [54%]), and vomiting (111 [38%]); the most common grade 3 or worse events were haematological (anaemia in 95 [33%] of 289; thrombocytopenia in 47 [16%]; and neutropenia in 28 [10%]). Of 134 (46%) of 289 patients with at least one serious treatment-emergent adverse event, the most common were also haematological (thrombocytopenia in 17 [6%] and anaemia in 13 [4%]). Two adverse events with fatal outcome (one patient with urosepsis in the BRCA cohort and one patient with sepsis in the non-BRCA cohort) were deemed possibly related to niraparib treatment. Interpretation Niraparib is tolerable and shows anti-tumour activity in heavily pretreated patients with metastatic castration-resistant prostate cancer and DRDs, particularly in those with BRCA alterations

    Differential efficacies of Cas nucleases on microsatellites involved in human disorders and associated off-target mutations

    No full text
    International audienceMicrosatellite expansions are the cause of >20 neurological or developmental human disorders. Shortening expanded repeats using specific DNA endonucleases may be envisioned as a gene editing approach. Here, we measured the efficacy of several CRISPR-Cas nucleases to induce recombination within disease-related microsatellites, in Saccharomyces cerevisiae. Broad variations in nuclease performances were detected on all repeat tracts. Wild-type Streptococcus pyogenes Cas9 (SpCas9) was more efficient than Staphylococcus aureus Cas9 on all repeats tested, except (CAG) 33. Cas12a (Cpf1) was the most efficient on GAA trinucleotide repeats, whereas GC-rich repeats were more efficiently cut by SpCas9. The main genetic factor underlying Cas efficacy was the propensity of the recognition part of the sgRNA to form a stable secondary structure, independently of its structural part. This suggests that such structures form in vivo and interfere with sgRNA metabolism. The yeast genome contains 221 natural CAG/CTG and GAA/CTT trinucleotide repeats. Deep sequencing after nuclease induction identified three of them as carrying statistically significant low frequency mutations, corresponding to SpCas9 off-target double-strand breaks

    LAG3 is not expressed in human and murine neurons and does not modulate α‐synucleinopathies

    Full text link
    While the initial pathology of Parkinson’s disease and other α-synucleinopathies is often confined to circumscribed brain regions, it can spread and progressively affect adjacent and distant brain locales. This process may be controlled by cellular receptors of α-synuclein fibrils, one of which was proposed to be the LAG3 immune checkpoint molecule. Here, we analysed the expression pattern of LAG3 in human and mouse brains. Using a variety of methods and model systems, we found no evidence for LAG3 expression by neurons. While we confirmed that LAG3 interacts with α-synuclein fibrils, the specificity of this interaction appears limited. Moreover, overexpression of LAG3 in cultured human neural cells did not cause any worsening of α-synuclein pathology ex vivo. The overall survival of A53T α-synuclein transgenic mice was unaffected by LAG3 depletion, and the seeded induction of α-synuclein lesions in hippocampal slice cultures was unaffected by LAG3 knockout. These data suggest that the proposed role of LAG3 in the spreading of α-synucleinopathies is not universally valid

    Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy

    Get PDF
    International audienceThe purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated
    corecore