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LAG3 is not expressed in human and
murine neurons and does not
modulate α-synucleinopathies
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Abstract

While the initial pathology of Parkinson’s disease and other α-
synucleinopathies is often confined to circumscribed brain regions,
it can spread and progressively affect adjacent and distant brain
locales. This process may be controlled by cellular receptors of α-
synuclein fibrils, one of which was proposed to be the LAG3
immune checkpoint molecule. Here, we analysed the expression
pattern of LAG3 in human and mouse brains. Using a variety of
methods and model systems, we found no evidence for LAG3
expression by neurons. While we confirmed that LAG3 interacts
with α-synuclein fibrils, the specificity of this interaction appears
limited. Moreover, overexpression of LAG3 in cultured human
neural cells did not cause any worsening of α-synuclein pathology
ex vivo. The overall survival of A53T α-synuclein transgenic mice
was unaffected by LAG3 depletion, and the seeded induction of α-
synuclein lesions in hippocampal slice cultures was unaffected by
LAG3 knockout. These data suggest that the proposed role of LAG3
in the spreading of α-synucleinopathies is not universally valid.
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Introduction

Lymphocyte-activation gene 3 (LAG3) is an inhibitory immune

checkpoint molecule. It may represent a therapeutic target against

solid and haematologic tumours (Nguyen & Ohashi, 2015; Andrews

et al, 2017; Ascierto et al, 2017; Lichtenegger et al, 2018; Lim et al,

2020; Rohatgi et al, 2020). LAG3 is expressed in activated T cells,

natural killer cells and dendritic cells (Triebel et al, 1990; Huard

et al, 1994, 1997; Hannier & Triebel, 1999; Workman et al, 2002,

2009; Maçon-Lemaı̂tre & Triebel, 2005; Camisaschi et al, 2010), and

these findings support its role in the immune system. More recently,

it was proposed that LAG3 may function in the central nervous

system (CNS) as a receptor of pathogenic α-synuclein assemblies,

which are causally involved in Parkinson’s disease (PD). Mice

devoid of LAG3 were reported to develop lower levels of phosphory-

lated α-synuclein than wild-type mice upon inoculation with

α-synuclein pre-formed fibrils (PFFs). Furthermore, treatment with
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anti-LAG3 antibodies attenuated the spread of pathological

α-synuclein and drastically lowered the aggregation in vitro (Mao et

al, 2016).

This finding, if confirmed, could have far-reaching implications.

PD is a common neurodegenerative movement disorder (Beitz,

2014; Deweerdt, 2016; Jankovic, 2017) that causes a high level of

suffering to the affected patients and their families. Histologically,

PD is characterized by α-synuclein inclusions known as Lewy bodies

whose accumulation is associated with neurodegeneration (Dickson,

2012; Mullin & Schapira, 2015; Corbill�e et al, 2016). These inclu-

sions affect the Substantia nigra and other mesencephalic regions as

well as, in some cases, the amygdala and neocortex (Dickson,

2018). Growing evidence suggests that α-synuclein aggregates

spread from cell to cell (Volpicelli-Daley et al, 2011; Volpicelli-Daley

et al, 2014), by a “prionoid” process of templated conversion

(Aguzzi, 2009; Jucker & Walker, 2018; Kara et al, 2018; Henderson

et al, 2019; Karpowicz et al, 2019; Uemura et al, 2020; Kara et al,

2021). It is thought that interrupting transmission of α-synuclein
may slow down or abrogate the disease course. Although a more

general pathogenic role for LAG3 in the progression of prion disor-

ders has been ruled out (Liu et al, 2018), impairing the binding of

α-synuclein fibrils to neuronal LAG3 may still constitute an attrac-

tive target for small drugs or immunotherapy of PD.

Here, we have analysed LAG3 expression and α-synuclein bind-

ing in mouse and human model systems. Additionally, we studied

the propagation of pre-formed fibrils (PFFs) of α-synuclein in neural

stem cell (NSC)-derived neural cultures in the presence or absence

of LAG3. Finally, we have investigated the impact of LAG3 on

survival in ASYNA53T transgenic mice (a model of Parkinson’s

disease) expressing wild-type LAG3 as well as hemizygous or

homozygous deletions thereof. We failed to detect neuronal expres-

sion of LAG3 and were unable to establish any role for LAG3 in α-
synucleinopathies in vitro and in vivo.

Results

Absence of endogenous LAG3 from neuronal cell lines,
NSC-derived neural cultures and human brain samples

The sequence homology between human and mouse LAG3 proteins

is < 70%. This may limit the cross-species reactivity of anti-LAG3

antibodies. We therefore asked whether available antibodies bind

the extracellular domain of human or mouse LAG3. We coated 384-

well microplates with recombinant human LAG323-450 or mouse

LAG324-442 and measured binding of 8 commercially available anti-

LAG3 antibodies by enzyme-linked immunosorbent assay (ELISA)

(Fig 1A). All antibodies except LSB15026 bound exclusively human

or mouse LAG3, but not both. This suggests that many relevant

LAG3 epitopes differ between species. Western blot analysis con-

firmed that the mouse monoclonal antibody 4-10-C9 used in Mao et

al (2016) did not bind human LAG3 as either recombinant protein

or overexpressed by lentivirally transduced murine primary

cultures, whereas murine LAG3 was detected (Fig 1B).

We then attempted to identify a human neural cell line that

expresses LAG3. We therefore immunoblotted five different human

cell lines and included activated T lymphocytes for control. We did

not detect bands specific for LAG3 in any of the human glial,

neuronal or control (HEK293T) cell lines (Fig 1C). We then induced

differentiation of human neural stem cells (NSC) for which we had

available concomitant single-cell RNA sequencing (scRNAseq) data

(Hruska-Plochan et al, 2021), and immunoblotted their lysates. For

control, NSC-derived cultures were additionally transduced with a

lentiviral plasmid encoding human LAG3. Western blotting did not

reveal any LAG3-specific bands in non-induced cultures (Fig 1D),

and scRNAseq yielded only minimal counts for the LAG3 transcript

in neurons (N), astrocytes (AST) and mixed glial (MG) cells (Fig 1

E). The counts observed for LAG3 in these cell types were compara-

ble to those of the other T-cell checkpoints, T-cell immunoreceptor

with Ig and ITIM domains (TIGIT) and T-cell immunoglobulin and

mucin domain-containing protein 3 (TIM3 or HAVCR2) whereas

neuronal or astrocytic markers displayed the expected transcrip-

tional profiles (Fig EV1A). We also confirmed the absence of LAG3

signal in immunoblots of dopaminergic neuronal cultures from

control lines and PD patients carrying a N370S polymorphism in the

glucocerebrosidase (GBA) gene (Fig EV1B and F), further suggesting

that LAG3 is not expressed in neurons.

We next investigated whether LAG3 expression varies between

individual cells, potentially preventing its detection by bulk method-

ologies such as Western blotting despite robust expression by rare

single cells. We therefore performed immunofluorescence stainings

on NSC-derived human neural cultures. Again, no LAG3 could be

identified, whereas neural cultures lentivirally transduced with a

plasmid encoding LAG3 showed obvious positivity with two dif-

ferent antibodies (Fig 1G).

Subsequently, we investigated human brain areas for LAG3

expression. We selected post-mortem brain samples of Substantia

nigra and frontal cortex for immunoblotting. Activated T lympho-

cytes and lymphoepithelial tissue of tonsils were used as positive

controls due to their high expression of LAG3. Western blotting failed

to reveal the presence of LAG3 in human brain samples (Fig 1H).

Finally, we interrogated a single-nucleus (sn) RNAseq human

brain dataset that we have recently described (Saez-Atienzar et al,

2021) for LAG3 expression across different cell types. These data are

derived from 21 dorsolateral prefrontal cortices from 16 neurologi-

cally healthy donors (median age 36 years, range: 16–61 years,

male:female ratio = 1:1) and clustered and annotated using known

gene expression markers as specified (Saez-Atienzar et al, 2021).

We saw no LAG3 signals above background for any of 34 identified

cell clusters, including 13 clusters of excitatory and 11 subtypes of

inhibitory neurons, oligodendrocytes (ODC), oligodendrocyte

precursor cells (OPC), microglia (MGL), astrocytes (AST) and

endothelial cells (EC) (Fig 1I). Similar results were obtained by

examining available scRNAseq and snRNAseq datasets from juve-

nile and adult human brain tissue samples including Substantia

nigra (Zhang et al, 2016; Welch et al, 2019; Agarwal et al, 2020).

These results corroborate the absence of detectable LAG3 expression

in human neurons using snRNAseq.

Absence of endogenous LAG3 in murine brain samples

As the inability to detect LAG3 in human neuronal samples contra-

dicts previous observations (Mao et al, 2016), we analysed LAG3

expression in mouse brains. Prior RNAseq data reported that Lag3 is

poorly expressed in both hippocampus and cerebellum of WT mice

(Liu et al, 2018) and likely absent in murine neurons (Zhang et al,
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2014). Western blot of total brain homogenates from C57BL/6J

wild-type mice did not show any identifiable LAG3-specific band

(Fig 2A). Incubation with a different primary anti-LAG3 antibody

(Fig EV1C) and enrichment by immunoprecipitation (Fig EV2A)

confirmed the lack of LAG3 in wild-type mouse brain homogenates.

Next, we prepared mixed neuroglial and glial cortical cultures

from C57BL/6J mice and assessed LAG3 protein expression. The

anti-mitotic compound AraC was added to the mixed cortical

cultures to enrich for neurons and eliminate glia (Fig 2B, lower

panels). Western blotting (Fig 2B) did not reveal any endogenous
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LAG3 in any of the samples, even after enrichment by immunopre-

cipitation with anti-mouse LAG3 antibody 4-10-C9 from 500 μg of

total protein (Fig EV2B). Using a LAG3 sandwich ELISA, we

assessed LAG3 expression in primary cultures, murine synaptoneu-

rosome preparations and brain region-specific preparations. We did

not find LAG3 expression in any of the samples, in contrast to acti-

vated T cells used for control (Fig 2C). Immunofluorescence stain-

ing of neuronally enriched primary cultures led to the same results,

with LAG3 being detectable only in the lentivirally transduced

cultures that were used as positive controls (Fig 2D).

We next quantified Lag3 mRNA from mixed neuroglial and glial

cortical cultures by RT–qPCR (Fig 2E). By interpolation of the thresh-

old cycle (CT) of each sample into a standard curve, we estimated

the presence of around 1–2 transcripts/ng of RNA in mixed cortical

cultures and neuron-enriched cultures, whereas in mixed glial

cultures, Lag3 mRNA was slightly more abundant (4–5 transcripts/

ng of RNA). These values are close to what we observed for a

LAG3−/− mouse brain homogenate (1–2 transcripts/ng of RNA) and

indicate that these Lag3 signals were nonspecific. In contrast, around

1,600 transcripts/ng of RNA were counted in activated T cells.

To further expand our analyses, we performed scRNAseq of

microdissected ventral midbrain and striatum of 1-year-old mice that

had been given a single striatal injection of PBS or LPS (n = 9 and 8,

respectively) as previously described (Russo et al, 2019). We then

assigned 76,305 cells to major cluster using markers (Fig EV2C). We

specifically investigated transcript levels of murine Lag3 in endothe-

lial cells, several macrophage subtypes (MPH), astrocyte subtypes,

red blood cells (RBC), vascular smooth muscle cells (VSMC), neural

precursor cells (NPC), microglia subtypes (MGL), oligodendrocyte

subtypes (ODC), T cells, neuron subtypes, oligodendrocyte precursor

cells (OPC), ependymal cells (Epnd), choroid plexus cells (ChP) and

fibroblasts (Fibr) (Fig EV2D). Of all identified murine cells, only

transmembrane protein 119 (TMEM119)-positive microglia showed

modest expression of Lag3, marginally above background (Fig 2F).

Of interest, the activation of microglia with lipopolysaccharide (LPS)

led to decreased expression of Lag3 in microglia (Fig EV2E).

However, and consistent with the negative results for detection of

LAG3 in human snRNAseq, we did not detect murine Lag3 in

neurons or astrocytes under any condition examined.

Promiscuous binding of α-synuclein fibrils questions selectivity
towards LAG3

The above observations suggest that the neuroprotective effects

exerted by antibodies to residues 52–109 of the LAG3 D1 domain, or

the depletion of LAG3 (Mao et al, 2016), may not be required for

the interaction between neuronal LAG3 and α-synuclein fibrils.

However, α-synuclein fibrils binding to LAG3 could still be an

important component involved in PD by an unknown mechanism.

To investigate the interaction between LAG3 and α-synuclein fibrils,

we performed ELISA by coating human LAG323-450, the human

LAG3 structural homologue, CD4 (Triebel et al, 1990; Bae et al,

2014), the microtubule-binding domain (MTBD) of human tau

protein, the prion protein PrPC, apolipoprotein E3 (APOE3), TAR

DNA-binding protein 43 (TDP-43), bovine serum albumin (BSA)

and arachis hypogaea 2 (Ara h 2), a major peanut allergen, to indi-

vidual wells of a microtiter plate. We then incubated ELISA plates

with serial dilutions (concentration of monomer equivalent:

125 nM–30 pM) of α-synuclein fibrils and filaments of apoptosis-

associated speck-like protein containing a CARD (ASC). If binding

occurs, the fibrils would be retained by the antigen and would be

detected by antibodies. ASC filaments yielded the expected dose–
response curves when directly coated onto microplates (Fig EV3)

but did not bind any of the proteins presented (Fig 3A). While α-
synuclein fibrils (but not monomeric α-synuclein) interacted with

LAG3, they exhibited similar binding to MTBD of human tau protein

and to CD4 (Fig 3B). PrPC, the APOE3 as well as TDP-43, was found

to interact less strongly, whereas BSA, Ara h 2 and uncoated condi-

tions did not display any binding in our system.

The observations detailed above suggest a promiscuous binding

of α-synuclein fibrils to many proteins including LAG3, MTBD and

CD4, suggestive of surface effects leading to nonspecific interac-

tions. We therefore employed a microfluidic-based technology (Aro-

sio et al, 2016; Scheidt et al, 2019; preprint: Schneider et al, 2020)

◀ Figure 1. Absence of expression of LAG3 in human brain cells.

A Binding of eight commercial antibodies to recombinant human LAG323-450 and murine LAG324-442 via indirect ELISA. Seven out of eight antibodies bound either
human or mouse LAG3, while one antibody (LSB15026) recognized both species.

B Specific detection of murine but not human LAG3 using 4-10-C9 anti-LAG3 antibody is confirmed with Western blotting.
C No detection of human LAG3 in neuronal or glial cell lines of human origin. The band for LAG3 was detected in activated T cells.
D No band for human LAG3 could be detected with Western blot in lysates of fully differentiated human NSC-derived neural cultures.
E Violin plot showing the RNA expression levels of human LAG3 in human NSC-derived neural cultures. Identities annotate different clusters: Neuronal clusters are

comprised of the following markers: GAD2, GABRG1, NTRK2, NEFM, SNCG, SLC17A6, SCN2A, DDIT3/HRK. Mixed glial clusters are defined by the following markers:
GFAP, S100B, STMN2, NRN1, GPM6B, COL1A1, with astrocyte-specific clusters characterized by GFAP, S100B, GPM6B, COL1A1. LAG3 cannot be evidenced in any of the
clusters beyond few random events. Data shown from 5,476 unique analysed cells from one out of two independent biological replicates.

F Dopaminergic neuronal cultures from control lines and glucocerebrosidase (GBA) N370S PD patients were immunoblotted for the presence of LAG3. No band for LAG3
could be observed in neurons.

G Using high power, high-resolution laser scanning confocal microscopy, no human LAG3 signal could be detected in human neurons (Auto-hLAG3 transduced, DOX
OFF) by two different anti-human LAG3 antibodies (17B4 and D2G40; left panel and zoomed-in insets) whereas LAG3 was clearly detected in human neurons induced
to express hLAG3 (DOX ON; right panel and zoomed-in insets). Scale bars 25 μm.

H Human brain homogenates from autopsy material were immunoblotted for the presence of LAG3. No band for LAG3 could be evidenced in any of the brain
homogenates. Control samples (tonsils and activated human T cells) show expected bands.

I Nuclei were isolated from 21 human dorsolateral prefrontal cortices from 16 donors, isolated and were subjected to snRNAseq. Expression levels were quantified and
are shown as violin plots. The LAG3 transcripts are non-detectable in all 34 distinct cell types, including multiple excitatory and inhibitory neurons, oligodendrocytes
(ODC), oligodendrocyte precursor cell (OPC) microglia (MGL), astrocytes (AST) or endothelial cells (EC). Cluster markers as detailed in Saez-Atienzar et al, 2021.

Source data are available online for this figure.
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to characterize the receptor-ligand interaction. Microfluidic diffu-

sional sizing (MDS) measures the hydrodynamic radius (Rh) of a flu-

orescently labelled protein and can characterize binding by

displaying an increase in Rh upon ligand binding. Increasing concen-

trations of α-synuclein fibrils did not induce a change in the hydro-

dynamic radius of fluorescently labelled LAG323–434, CD4 or BSA

(Fig 3C), whereas a labelled antibody directed against α-synuclein
(MJFR1) triggered the expected concentration-dependent size

increase. A progressive increase in the concentration of monomeric

α-synuclein did not lead to a rise in the hydrodynamic radius of

labelled LAG3; however, both anti-LAG3 antibody (Relatlimab) and

FGL1, a recently discovered interaction partner of LAG3 (Wang et

C
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al, 2019), displayed clear binding (Fig 3D), with affinities of

4.82 � 0.71 nM and 232 � 79 nM, respectively. Given that no

significant binding was detected, we conclude that the affinity of

LAG3 for α-synuclein fibrils, if any, is micromolar or less.

To shed light onto the interaction between α-synuclein fibrils and

LAG3, we performed co-immunoprecipitation experiments. SH-SY5Y

cells overexpressing hLAG3 were incubated with monomeric or fib-

rillary α-synuclein in live cells for 3 h at 37°C to allow binding at

the cell membrane. Then, immunoprecipitations with antibodies to

LAG3 or α-synuclein were performed. Immobilized LAG3 co-

precipitated α-synuclein fibrils, whereas co-precipitation with both

monomeric and fibrillar α-synuclein resulted in only a faint band for

LAG3 (Fig 3E and F). A major portion of both LAG3 and α-synuclein
fibrils remained in the unprecipitated soluble fraction.

Membrane-bound LAG3 does not affect the uptake and seeding
of α-synuclein PFFs in human neural cultures

The collective biochemical data presented above led us to question

whether there is a physiologically relevant interaction between α-
synuclein fibrils and LAG3. We therefore tested its functional rele-

vance in a human cell-based system. We differentiated NSCs into

human neural cultures previously shown to be devoid of LAG3

(Fig 1D and E) and transduced them with a lentivirus encoding

inducible expression of human LAG3. These cultures expressed α-
synuclein (Fig EV4A). We then added sonicated α-synuclein-pre-
formed fibrils (PFFs) (Volpicelli-Daley et al, 2014) and incubated

the cells with them for 14–28 days. Finally, we stained the phospho-

rylated form (pS129) of α-synuclein with two different phosphory-

lated α-synuclein-specific antibodies. We then compared the amount

of α-synuclein fibrils uptake and seeding through intracellular pS129

α-synuclein accumulation, in cultures that did not express (Fig

EV4B) or expressed (Fig EV4C) LAG3. We found no difference in

the proportion of cells containing pS129 α-synuclein between the

two conditions using the 81A (Fig 4A) or EPY1536Y anti-pS129 α-
synuclein antibodies (Fig 4B). Quantification of images using a

trained ilastik-based algorithm for pixel segmentation failed to show

any effects of LAG3 expression (Fig 4C and D). This suggests no

significant role for neuronal LAG3 in the uptake and, therefore, in

the downstream processes, including the transmission, of α-
synuclein fibrils in this paradigm.

Similar survival of ASYNA53T LAG3−/−, LAG3+/− or LAG3+/+ mice

Human LAG3 may be functionally dissimilar to its murine counter-

part. Hence, the negative data shown above do not negate an effect

of Lag3 in mice. We therefore examined the impact of LAG3 expres-

sion on the survival of mice expressing human α-synucleinA53T

under the transcriptional control of the mouse Thy1.2 promoter

(Van Der Putten et al, 2000). Since the expression of endogenous α-
synuclein is a key requirement for its propagation (Volpicelli-Daley

et al, 2014; Polinski et al, 2018), and since expression levels of α-
synuclein influence the propensity of aggregate formation

(Hayashita-Kinoh et al, 2006), we first assessed whether α-synuclein
expression is similar in ASYNA53T-expressing LAG3−/− and LAG3+/+

mice. No differences were found in cerebrospinal fluid (CSF)

collected from aged mice with Quanterix Single Molecule Arrays

(SIMOA) (Fig EV5), indicating that LAG3 does not modulate the

levels of the transgene.

We then bred ASYNA53T;LAG3−/−, ASYNA53T;LAG3+/-, ASYNA53T;

LAG3+/+ and nontransgenic LAG3−/− mice (n = 8, 9, 13 and 8,

respectively, including males and females). All mice expressing

ASYNA53T, but none of the nontransgenic LAG3−/− mice, developed

severe α-synucleinopathy and were sacrificed with a median

survival of A53T α-synuclein mice of 263 days regardless of LAG3

genotype (95% CI: 240–277; Fig 5A). Consistent with these results,

LAG3 knockout did not induce histologically detectable changes in

the mesencephalic distribution patterns of pS129 α-synuclein or

thioflavin S-positive aggregates (Fig 5B) of end-stage symptomatic

mice. These results suggest that LAG3 plays little, if any, role in the

propagation of α-synuclein pathology in vivo.

No difference in pS129 α-synuclein in hippocampal organotypic
slice cultures of A53T LAG3−/− or LAG3+/+ mice

The effect of LAG3 in mice may be contingent on the utilization of

α-synuclein PFFs as a seed. Alternatively, LAG3 may influence early

α-synuclein lesion formation without modifying the survival or the

end-stage pathology of mice. To this end, we cultured hippocampal

slices of A53T α-synuclein TG or α-synuclein WT mice KO or WT

for LAG3, respectively, and inoculated them with 5 μg α-synuclein
PFFs. Organotypic slices were kept in culture for 5 weeks, and the

pS129- or thioflavin S-positive area was assessed (Barth et al, 2021).

◀ Figure 2. Absence of expression of LAG3 in mouse brain cells, particularly in neurons.

A Brain homogenates from LAG3 KO and WT mice were immunoblotted for the presence of murine LAG3. Western blot does not show a specific band other than for
activated murine T cells.

B Mixed neuroglial, neuron-enriched and glial cortical cultures were assayed for the presence of LAG3 where no band could be found. Activated T cells display band at
expected size.

C Lysates of synaptoneurosomes (SNS) of different brain regions and mouse brain region-specific areas as well as murine activated T cells were assayed for the
presence of LAG3 with sandwich ELISA. No evidence for LAG3 could be found in any of the samples other than in activated T cells. Expression is shown in pg LAG3 per
μg total protein as mean values of technical quadruplicates with 95% confidence intervals.

D Using high power, high-resolution laser scanning confocal microscopy, no mouse LAG3 signal could be detected in murine primary neuronal cultures (Auto-mLAG3
transduced, DOX OFF and non-transduced neurons) using anti-mouse LAG3 antibody (MABF954) whereas LAG3 was clearly detected in primary neurons induced to
express mLAG3 (Auto-mLAG3 transduced, DOX ON). Scale bars 20 μm.

E RT–qPCR-derived CT values to measure the cDNA copy number. Mixed neuroglial cultures, glial cultures and neuron-enriched cultures show transcript levels that are
close to indistinguishable to those from LAG3−/− BH. Conversely, around 1,600 transcripts/ng of RNA were counted in activated T cells.

F Murine mesencephalon and striatum of 1-year-old mice (n = 17 in total) were interrogated with scRNAseq. Violin plot showing expression values of Lag3, in 76,305
assigned cells, between identified cell clusters, mainly expressed in TMEM119-positive microglia cells. Cluster markers are detailed in Russo et al, 2019.

Source data are available online for this figure.
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Non-seeded organotypic slices did not show any sign of pS129 α-
synuclein (Fig 5C) or thioflavin S positivity (Fig 5D), while seeded

α-synuclein WT slices showed moderate pS129 α-synuclein- or thio-
flavin S-positive areas and A53T slices had more prominent pathol-

ogy, as previously reported (Barth et al, 2021). However, no

significant difference was found between LAG3 KO and WT in slices

derived from A53T transgenic or wild-type mice, indicating that

LAG3 does not play an essential role in the uptake and propagation

of α-synuclein PFFs in this system.

Discussion

LAG3 was named a selective receptor for pathogenic α-synuclein
assemblies using an exhaustive series of in vitro and in vivo experi-

ments with a variety of genetic and pharmacological tools (Mao

et al, 2016). Yet, there is little evidence for a role of LAG3 in human

α-synucleinopathies (Liu et al, 2018; Cui et al, 2019; Guo et al,

2019). This situation prompted us to revisit the interaction between

LAG3 and α-synuclein conformers. When assessing cell lines,

NSC-derived neural cultures or organ homogenates for the presence

of human or murine LAG3, we selected antibodies appropriate to

the species investigated and, whenever possible, have used multiple

antibodies to increase the confidence in our results. We were unable

to detect LAG3 in any of the neuronal samples tested. Thus, we felt

the need to investigate further using a broader array of techniques:

Western blotting, sandwich ELISA, immunofluorescence, RT–qPCR,
snRNAseq and scRNAseq. None of these methods were able to

detect endogenous LAG3 expression in human neurons. The most

parsimonious interpretation of these collective data is that human

neurons do not express LAG3 at appreciable levels. One notable

exception is our scRNAseq dataset of mouse ventral midbrain

detecting low expression of LAG3 in microglia, in accordance with

previous reports (Tasic et al, 2016; Galatro et al, 2017).

It is unclear whether the lack of detection of LAG3 in human

microglia relates to a crucial species difference or to technical limita-

tions of snRNAseq versus scRNAseq, which may be particularly

important for microglia (Thrupp et al, 2020). Either way, these data

and other available data sets (Zhang et al, 2014, 2016; Welch et al,

2019; Agarwal et al, 2020; Almanzar et al, 2020) do not support
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Figure 3. Characterization of binding properties between α-synuclein PFFs and LAG3 reveals promiscuous character of α-synuclein.

A, B Binding of ASC filaments (A) or α-synuclein PFFs (B) to multiple proteins. Serial dilutions of ASC filaments and α-synuclein PFFs were performed, and bound
fractions were detected using anti-ASC or anti-α-synuclein (MJFR1) antibodies. ASC filaments did not interact with any of the proteins (A). Conversely, α-synuclein
PFFs strongly bound LAG3, CD4 and MTBD tau and showed moderate binding properties to PrPC, APOE3 and TDP-43. No binding between α-synuclein PFFs and
nAra h 2 or BSA could be detected. Values represent means � SD of technical duplicates.

C, D Diffusional sizing of α-synuclein PFFs with fluorescently conjugated LAG3, CD4, BSA and MJFR1 α-synuclein antibody (C) and of fluorescently labelled LAG3 with
monomeric α-synuclein, α-synuclein PFFs, FGL1 and Relatlimab anti-LAG3 antibody (D). An increase in the hydrodynamic radius (Rh) of α-synuclein PFFs is seen
with increasing concentrations for MJFR1 but not for LAG3 or any of the control proteins, also not at a lower scale (see insert) (C). Similarly, the hydrodynamic
radius of labelled LAG3 increases with higher concentrations of Relatlimab and FGL1 but does not change with α-synuclein PFFs or monomeric α-synuclein (D).
Values are given as means � SD of technical triplicates.

E, F Co-immunoprecipitation of LAG3 and subsequent immunoblotting with anti-α-synuclein antibody (MJFR1) (E) and co-immunoprecipitation of α-synuclein
(monomeric or PFFs) and subsequent immunoblotting with anti-LAG3 antibody (D2G40) (F). Using the anti-α-synuclein antibody for pulldown resulted in LAG3
bands with both monomeric as well as fibrillar α-synuclein. The usage of anti-LAG3 for pulldown led to the specific detection of α-synuclein PFFs, although the PFF
fraction predominates also in the input and supernatant. Bands for α-synuclein (E) and LAG3 (F) are indicated by arrows.

Source data are available online for this figure.
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expression of neuronal LAG3, at least using current technology for

single-cell analysis. Thereby, we question one of the foundations of

the hypothesis proposed by Mao et al, (2016) and discussed else-

where (Jucker & Heikenwalder, 2016; Wood, 2016; Wong & Krainc,

2017).

A possible confounder may be the cross-immunoreactivity of

antibodies between murine and human LAG3, which appears to be

rare. Within a collection of commercial anti-LAG3 antibodies, only

one out of 8 anti-LAG3 antibodies reacted with both human as well

as murine LAG3. Mao et al. immunoblotted the human HEK293FT

and SH-SY5Y cell lines alongside mouse cortical cultures using an

anti-LAG3 antibody (4-10-C9, MABF954) that appears to specifically

recognize LAG3 of murine origin (see supplementary figure 5 in

Mao et al, 2016).

LAG3 could plausibly play a role in the pathogenesis of α-
synucleinopathies, e.g. via complex formation with soluble LAG3

(Guo et al, 2019) and subsequent endocytosis by hitherto unidenti-

fied neuronal receptors or via targeting immune checkpoints of T

cells (Baruch et al, 2016; Schwartz, 2017; Liu & Aguzzi, 2019)

despite not being pulled down upon brief exposure of mouse

primary neurons and astrocytes to α-synuclein fibrils (Shrivastava

et al, 2015). The interaction between LAG3 and fibrillary α-
synuclein is therefore of interest. α-Synuclein fibrils, in contrast to

apoptosis-associated speck-like protein containing a CARD (ASC),

are promiscuous; yet, they bind some proteins much better than

others. LAG3, the microtubule-binding domain of human tau and

CD4, interacted more than PrPC, APOE3 and TDP-43, whereas BSA

and Ara h 2 showed even less interaction. However, the binding of

α-synuclein fibrils to CD4 stands in direct opposition to data

presented earlier (Mao et al, 2016). FGL1, a recently reported inter-

action partner of LAG3 (Wang et al, 2019), could be confirmed to

bind LAG3 with microfluidic diffusional sizing (MDS), with an
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Figure 4. Propagation of α-synuclein PFFs in vitro is not dependent on LAG3 in human NSC-derived neural cultures.

Human neural cultures transduced by Auto-hLAG3 were treated by α-synuclein PFFs 4 days post-LAG3 expression induction by DOX and kept in culture for 2 or 4 weeks.
Both transgenic (hLAG3 D2G40-positive in (A) and 17B4-positive in (B)) and non-transduced, wild-type neurons (selected neurons in zoomed-in insets) propagated α-
synuclein and developed characteristic pS129-positive (81A-positive in (A) and EP1536Y-positive in (B)) α-synuclein aggregates. Scale bars 25 μm. Trained ilastik
algorithms were used to segment pixels of 81A, EP1536Y and MAP2 stainings imaged by high-content widefield microscope, which were used to quantify the signal of
81A-positive (C) and EP1536Y-positive (D) α-synuclein aggregates expressed as % of MAP2-positive area. Almost the entire wells (182 fields per well) were imaged for
every condition and replicate, and each datapoint in the plot represents the entire well. Error bars indicate mean � SD of biological replicates (duplicates). For few
conditions, unicates were used, shown as one dot. One-way ANOVA followed by Tukey’s multiple comparison test demonstrated that neurons that did not express LAG3
(DOX OFF) showed no difference in α-synuclein propagation when compared to LAG3-expressing neurons (DOX ON) as demonstrated by two different pS129 α-synuclein
antibodies (P = 0.9998 for 81A at 2 weeks and P = 0.2522 at 4 weeks; P = 0.9986 for EP1536Y at 2 weeks and P = 0.3042 at 4 weeks).
Source data are available online for this figure.
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affinity of 232 � 79 nM, slightly higher than a previous assessment

with Octet bio-layer interferometry analysis suggested (Wang et al,

2019). On the other hand, MDS failed to reproduce data obtained

by ELISA, as no binding between LAG3 and α-synuclein fibrils

occurred, nor with CD4 and α-synuclein fibrils. This could indicate

that the nature of interaction differs between LAG3 and α-synuclein

A

C

D

B

Figure 5.
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fibrils or FGL1. A possible explanation is that a single α-synuclein
fibril binds to multiple LAG3 molecules through electrostatic and/

or hydrophobic interactions, resulting in cooperative unspecific

interactions that can be captured with ELISA where proteins are

immobilized, but not with MDS.

A pulldown experiment confirmed the weak interaction between

LAG3 and α-synuclein fibrils. Due to the promiscuous binding of α-
synuclein fibrils, their specificity to LAG3 seems questionable.

Experiments performed by Mao et al (2016) indicate that LAG3−/−

reduces α-synuclein fibril binding in cortical neurons by maximally

10% (see figure 1D, in Mao et al (2016)). In the original report, mean

values in LAG3−/− primary cortical neurons differ only at high α-
synuclein fibril-biotin concentrations and display a relatively high

standard error (Mao et al, 2016), suggesting that there was no

biologically important difference. This is not surprising in view of

LAG3 not being expressed in neuronal cultures, so its ablation

should not have an effect. Our experiments in human neural cultures

point in the same direction as we could not identify any significant

difference in pS129-positive aggregates upon expression of LAG3,

strongly suggesting that other neuronal factors, some of which we

identified through a pulldown approach (Shrivastava et al, 2015),

mediate the uptake and transmission of α-synuclein fibrils.

The negative findings discussed above do not preclude a modula-

tory role for LAG3 in α-synucleinopathies through other mecha-

nisms. We investigated whether LAG3 ablation changes the

propensity of α-synuclein aggregation in vivo and, importantly,

whether it affects the overall survival of α-synuclein-overexpressing
mice. However, our study conducted in A53T human α-synuclein
TG mice KO, hemizygous or WT for LAG3 showed that neither lifes-

pan nor deposition of α-synuclein aggregates is significantly

changed upon the presence or absence of LAG3, leaving little hope

that LAG3 would assume a role in α-synuclein-related pathologies.

Experiments with hippocampal organotypic slice cultures inoculated

with α-synuclein PFFs did not change this perception to the better

and do not seem to converge with the notion that LAG3 contributes

to α-synucleinopathy in different A53T human α-synuclein mice (Gu

et al, 2021).

Parkinson’s disease and other pathologies underlying the spread

of α-synuclein aggregates are severe neurodegenerative diseases

with momentous implications on the lives of patients and their fami-

lies. More work is needed to understand how α-synuclein is

transmitted from cell to cell, to identify selective receptors for propa-

gating forms of α-synuclein and to subsequently enable a targeted

treatment. Until then, potential targets need to be rigorously vetted,

bearing in mind that attrition of futile approaches is crucial to avoid-

ing high opportunity costs.

Materials and Methods

Usage of human material

All experiments and analyses involving samples from human donors

were conducted with the approval of the local ethics committee

(BASEC-2020-00234), in accordance with the provisions of the

Declaration of Helsinki, the Department of Health and Human

Services Belmont Report and the Good Clinical Practice guidelines

of the International Conference on Harmonisation. Informed consent

was obtained from all individuals if applicable. The local ethics

committee issued a clearance certificate/declaration of no-objection

when fully anonymized human samples were used.

Animal work

Mice housing were in accordance with the Swiss Animal Welfare

Law and in compliance with the regulations of the Cantonal Veteri-

nary Office, Zurich (permits 033/2018, 236/2019). Mice were bred

in high hygienic grade facilities and housed in groups of 3–5, under
a 12-h light/12-h dark cycle (from 7 am to 7 pm) at 21 � 1°C, with

sterilized food (Kliba No. 3431, Provimi Kliba, Kaiseraugst, Switzer-

land) and water ad libitum. For primary culture, we used 8- to 9-

week-old C57BL/6J mice. When needed, two pregnant females

(E14) were delivered and housed in the animal facility of the

University of Zurich.

A53T-α-synuclein (Thy1-hA53T-αS) (Van Der Putten et al, 2000)

and LAG3 KO (B6.129S2-LAG3tm1Doi/J) (Miyazaki et al, 1996)

animals were bred and kept under specific pathogen-free conditions

at the Hertie Institute for Clinical Brain Research in T€ubingen,

Germany, with sterilized food and water ad libitum. For estimation

of survival rates, genders were balanced within the groups, whereas

only female mice were used for immunological and Thioflavin S

staining. LAG3 KO mice were initially purchased from Jackson

◀ Figure 5. Survival in A53T α-synuclein mice and aggregation of α-synuclein in vivo and in hippocampal slice cultures is independent from LAG3 expression.

A Survival curves of A53T α-synuclein TG mice, with LAG3 knockout, heterozygous LAG3 expression, or LAG3 WT. Median survival was shortest for α-synuclein TG LAG3−/−

at 239 days, followed by α-synuclein TG LAG3+/− at 260 days and α-synuclein TG LAG3+/+ at 268 days. The survivals of ASYNA53T LAG3−/−, LAG3+/− and LAG3+/+ mice
were similar (Mantel–Cox log-rank test, P-value = 0.165). Mice were euthanized and dissected in the late-stage symptomatic phase, which would inevitably result in
death within a week. None of the control LAG3−/− α-synuclein WT mice died over the course of the experiment.

B Immunostaining for hyperphosphorylated α-synuclein aggregates (pS129) and aggregated protein (Thioflavin S) in sections of end-stage symptomatic mice; no
obvious difference in terms of staining pattern or number of stained cells was apparent in midbrain or brain stem. Scale bars represent 1 mm (sagittal section) and
100 μm (panel).

C Immunofluorescence staining and quantification of pS129-positive α-synuclein inclusions in hippocampal slice cultures (HSCs) at 5 weeks post-seeding with 350 μM
PFF. Scale bars represent 500 μm (overview), and 100 μm (insets). Shown is mean � SEM, and individual values are shown; n = 6 cultures per group; two-way-
ANOVA revealed for LAG3 F(1, 20) = 0.0294; P = 0.8656; A53T F(1, 20) = 36.42, P < 0.0001; interaction F(1, 20) = 0.0062, P = 0.9382. Bonferroni’s correction for
multiple comparisons revealed P = 0.9973 for LAG3 WT versus KO in A53T TG and P > 0.9808 for LAG3 WT versus KO in A53T WT.

D Immunofluorescence staining and quantification of Thioflavin S-positive α-synuclein inclusions in HSCs at 5 weeks post-seeding. Scale bars represent 500 μm
(overview), and 100 μm (insets). Shown is mean � SEM, and individual values are shown; n = 5–6 cultures per group; two-way-ANOVA revealed for LAG3 F(1,
19) = 1.972, P = 0.1763; A53T F(1, 19) = 62.49, P < 0.0001; interaction F(1, 19) = 1.586, P = 0.2231. Bonferroni’s correction for multiple comparisons revealed
P = 0.1373 for LAG3 WT versus KO in A53T TG and P > 0.9999 for LAG3 WT versus KO in A53T WT.

Source data are available online for this figure.
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Laboratories (Bar Harbor, ME, USA) and crossed to our internal

strains to generate the various genotypes used in this study. The

experimental procedures were carried out in accordance with the

veterinary office regulations of Baden-Wuerttemberg (Germany) and

approved by the local Animal Care and Use Committees.

Antibodies used

See Table 1.

Antigens used

See Table 2.

Mouse primary cultures

Primary neuronal cell cultures were prepared from brains of E16-17

mouse embryos. Briefly, hippocampus and cortex were isolated in

PBS-Glucose (D-Glucose, 0.65 mg/ml). The tissue was treated with

trypsin (0.5% w/v) in PBS-Glucose and dissociated in Neurobasal

Medium (NB) supplemented with glutamine (2 mM), 2% B27, 2%

N2, 100 U penicillin–streptomycin (P/S) and D-Glucose (0.65 mg/

ml). In order to obtain a mixed culture, the medium was supple-

mented with 2.5% Horse Serum for the first 24 h in vitro, while for

neuronal-enriched culture, cells were treated with 5 μM cytosine

arabinoside (AraC) from DIV 1 to DIV 6. For biochemical experi-

ments, cells were then plated onto poly-D-lysine coated 6-well plate

(TPP-92006) at 8 × 105 cells/cm2. For imaging, cells were plated

onto poly-D-lysine-coated chambered coverglass (NuncTM Lab-

TekTM - 155411) at 2 × 105 cells/cm2. For both types of culture,

only one-half of the medium was exchanged every 3–4 days. When

lentiviral transduction was used to generate LAG3-expressing

cultures, cells were transduced at DIV 6 and fixed at DIV 13.

Primary glia cell cultures were prepared from postnatal (P4-P6)

pups. Briefly, hippocampus and cortex were isolated. The tissue

was treated with trypsin (0.5% w/v) in HBSS-Glucose (D-Glucose,

0.65 mg/ml) and triturated with glass pipettes to dissociate tissue in

DMEM/F12 (31330038) supplemented with glutamine (2 mM), 5%

horse serum and 100 U penicillin–streptomycin, 100 μM non-

essential amino acid and 2 mM sodium pyruvate. For biochemical

experiments, cells were plated 6-well plate (TPP-92006) at 8 × 105

cells/cm2. For imaging, cells were plated onto chambered coverglass

(NuncTM Lab-TekTM-155411) at 2 × 105 cells/cm2.

Synaptoneurosome preparations and region-specific dissections
of murine brains

Synaptosome fractions were prepared following the protocol

performed as described earlier (De Rossi et al, 2020). Briefly,

cortices, striata and hippocampi were dissected from the brains of

adult C57BL/6J mice and resuspended in cold buffer containing

0.32 M sucrose and 10 mM HEPES at pH 7.4 and centrifuged twice

(at 770 ×g) to remove nuclei and large debris, followed by centrifu-

gation at 12,000 × g to obtain the synaptosome fraction. The

synaptosomes were washed and pelleted in EDTA buffer to chelate

calcium (4 mM HEPES, 1 mM EDTA, pH 7.4, 20 min at

12,000 × g). The synaptosomes were resuspended in the lysis

buffer for 1 h on ice (20 mM HEPES, 0.15 mM NaCl, 1% Triton

X-100, 1% deoxycholic acid, 1% SDS, pH 7.5) and stored at −80°C.
Region-specific dissections (cortex, hippocampus, olfactory bulb,

corpus callosum, midbrain, striatum, hindbrain, cerebellum) were

performed in the same mice and solubilized in 20 mM HEPES,

0.15 mM NaCl, 1% Triton X-100, 1% deoxycholic acid, 1% SDS,

pH 7.5 and stored at −80°C.

Isolation and activation of mouse T lymphocytes

T lymphocytes were isolated from the spleen of C57BL/6J mice

using a negative selection isolation kit (EasySep™ Mouse T Cell

Isolation Kit, StemCell Technologies). Cells were plated in a 48-well

plate (Corning) previously coated with anti-mouse CD3 (clone

#17A2, PeproTech) and anti-mouse CD28 (clone #37.51, PeproTech)

antibodies and incubated in IMEM medium supplemented with IL-2

at 37°C. After 3 days, the activated T lymphocytes were collected

and processed for either RNA extraction or Western blotting. The

expression of mLAG3 was checked by Western blotting using

mLAG3-transfected HEK cells as positive control.

Isolation and activation of human T lymphocytes

Fully anonymized residual full blood samples were collected at the

Institute of Clinical Chemistry (USZ) using a workflow outlined

previously (preprint: Emmenegger et al, 2020), and peripheral blood

mononuclear cells (PBMCs) were isolated using a Ficoll gradient.

PBMCs were resuspended in RPMI medium supplemented with 10%

FBS, 1× P/S, 1× non-essential amino acids (Gibco) and 1× sodium

pyruvate (Gibco), to reach a concentration of 2 million cells per ml.

2 ml cell suspension/well was added into a 24-well plate. 1 ml

medium was removed every second day, and 1 ml RPMI medium

with supplements as listed above as well as with 100 international

units IL-2 and 2 μg/ml phytohemagglutinin (PHA) was added. T

cells were cultured between 7 and 9 days. Finally, the medium was

removed, 100 μl lysis buffer (50 mM Tris, pH 8, 150 mM NaCl, 1%

Triton, protease and phosphatase inhibitors) was added to each well

and multiple wells were pooled. Following a centrifugation step

(16,000 g, 20 min, 4°C), the supernatant was transferred to a clean

tube and the protein concentration measured using the BCA assay.

Lentivirus preparation, transduction and SH-SY5Y cell
line generation

Using NEBuilder HiFi DNA Assembly Cloning Kit (NEB #E5520),

human or mouse LAG3 cDNA sequence (GeneCopoeia #EX-Z5714-

M02 and #EX-Mm03576-M02) was inserted into an autoregulatory,

all-in-one TetON cassette (AutoTetON; Hruska-Plochan et al, 2021),

which was previously inserted into a pLVX lentiviral transfer vector

(Clontech # 632164), while deleting CMV-PGK-Puro, generating

Auto-hLAG3 and Auto-mLAG3 lentiviral transfer vectors. These

were then packaged into lentivirus via co-transfection with CMV-

Gag-Pol (Harvard #dR8.91) and pVSV-G (Clontech, part of #631530)

plasmids into production HEK293T cells adapted to grow in serum-

free conditions (OHN media Hruska-Plochan et al, 2021), which

reduces the expression of the GOI from the transfer vector as well as

it eliminates serum carry over into the supernatant. Medium was

changed the following morning, and supernatants were then

collected 48 h post-transfection (36 h postmedia change),
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centrifuged at (500 g, 10 min, 4°C), filtered through Whatman 0.45-

μm CA filter (GE #10462100) and concentrated using Lenti-X™

Concentrator (Takara #631232) according to producer datasheet

(overnight incubation). The resulting lentiviral pellets were then

resuspended in complete neuronal maturation media or OHN media

to achieve 10× concentrated LV preparations, which were titrated

using Lenti-X™ GoStix™ Plus (Takara #631280). Auto-hLAG3 had a

GoStix Value (GV) of 6496 and Auto-mLAG3 had GV of 12839.

Transduction of NSC-derived human neural cultures

Differentiated human neural cultures (2 months old) were trans-

duced with 250 μl of Auto-hLAG3 LV and 3 μg/ml of polybrene

(Sigma-Aldrich #TR-1003-G) per well of a 6-well plate. Medium was

exchanged completely the following day. hLAG3 expression was

induced by 1 μg/ml of Doxycycline (DOX; Clontech #631311).

Transduction of SH-SY5Y cells to generate SH-10 line inducibly
expressing hLAG3

SH-SY5Y human neuroblastoma cells (Sigma-Aldrich #94030304) at

P11 were transduced in a 6-well plate using 300 μl of Auto-hLAG3

Table 1. Details on antibodies used in current study.

Name Immunogen Experiment

4-10-C9 mouse
monoclonal antibody
(MABF954, Merck Millipore)

Mouse LAG3 Mouse Western Blot,
Mouse LAG3 sandwich
ELISA, indirect ELISA

LSB15026 rabbit polyclonal
antibody (LSBio)

Mouse LAG3 Mouse Western Blot,
indirect ELISA

rat mAb C9B7W Mouse LAG3 Mouse LAG3 sandwich
ELISA, indirect ELISA

LAG3 (D2G4O™) XP® Rabbit
mAb #15372

Human LAG3 Human Western Blot,
immunofluorescence,
human LAG3 sandwich
ELISA, indirect ELISA

Anti-LAG3 antibody [17B4]
(ab40466)

Human LAG3 Human Western Blot,
immunofluorescence,
indirect ELISA

Relatlimab anti-LAG3
antibody (BMS-986016)

Human LAG3 Human LAG3 sandwich
ELISA, indirect ELISA

LAG525 (Novartis) Human LAG3 Indirect ELISA

Mouse mAb human LAG3
(Clone 874501)

Human LAG3 Indirect ELISA

Anti-Alpha-synuclein
(phospho S129) antibody
[P-syn/81A] (ab184674)

pS129 α-
synuclein

Immunofluorescence

Recombinant Anti-Alpha-
synuclein (phospho S129)
antibody [EP1536Y]
(ab51253)

pS129 α-
synuclein

Immunofluorescence

Recombinant Anti-Alpha-
synuclein antibody [MJFR1]
(ab138501)

α-synuclein ELISA with fibrils,
immunofluorescence,
Microfluidic diffusional
sizing

Polyclonal rabbit anti-ASC
antibody AL177 (AdipoGen,
#AG-25B-0006)

ASC ELISA with fibrils

Anti-Glial Fibrillary Acidic
Protein (GFAP) (ab53554)

GFAP Immunofluorescence
analysis of mouse
primary cultures

Anti-MAP2 antibody
(ab5392)

MAP2 Immunofluorescence
analysis of mouse
primary cultures

Anti-Iba1 (WA3 019-19741) Iba1 Immunofluorescence
analysis of mouse
primary cultures

HRP Donkey anti-rat IgG
(H + L), 712-035-153,
Jackson

Secondary antibody,
ELISA, Western blot

HRP Goat anti-Rabbit IgG
(H + L), 111-035-045,
Jackson

Secondary antibody,
ELISA, Western blot

HRP Goat anti-mouse IgG
(H + L), 115-035-003,
Jackson

Secondary antibody,
ELISA, Western blot

Peroxidase AffiniPure Goat
Anti-Human IgG, Fcγ
Fragment Specific, Jackson,
109-035-098

Secondary antibody,
ELISA, Western blot

Donkey anti-rabbit AF568
(Invitrogen #A10042)

Secondary antibody,
immunofluorescence

Table 1 (continued)

Name Immunogen Experiment

Donkey anti-mouse AF488
(Invitrogen #A-21202)

Secondary antibody,
immunofluorescence

Donkey anti-chicken AF647
(Jackson ImmunoResearch
#JAC703-606-155)

Secondary antibody,
immunofluorescence

Table 2. Details on antigens used in current study.

Name Experiment

Human APOE3, PeproTech (#350-02) ELISA with fibrils

Human ASC-C-his, produced by Matthias Geyer
(Bonn)

ELISA with fibrils

Human LAG323–450, ACROBiosystems (#LA3-
H5222)

ELISA with fibrils,
antibody testing

Human LAG323–434, BonOpusBio (#CJ91) MDS

Mouse LAG324–442, ACROBiosystems (#LA3-
M52H5)

ELISA with fibrils,
antibody testing

Natural Ara h 2 (NA-AH2-1), Light roasted peanut
flour (Runner cultivar), Indoor Biotechnologies

ELISA with fibrils

Human recombinant PrPC, produced in-house
(Adriano Aguzzi)

ELISA with fibrils

Bovine serum albumin (BSA), Thermo Scientific ELISA with fibrils,
MDS

FGL1 Protein, Human, Recombinant, 13484-
H08B, Sino Biological

MDS

Human α-synuclein, produced in-house (Kelvin
Luk)

ELISA with fibrils

Human CD4, ACROBiosystems (#LE3-H5228) ELISA with fibrils,
MDS

MTBD tau, produced in-house (Adriano Aguzzi) ELISA with fibrils
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LV pre-incubated with 30 μl of Lenti-X™ Accelerator (Clontech

#631256) for 30 min. The LV mixture was added onto the cells,

evenly spread over the whole well and put into incubator onto a

neodymium magnetic sheet (supermagnete #NMS-A4-STIC; adhe-

sive force of 450 g/cm²) for 10 min. Cells were then removed from

the incubator, LV mixture was completely removed, and fresh SH

media added. Cells were kept until confluency and then sub-

cultured with the neodymium magnet sheet kept under the plate. To

remove remaining magnetic beads, cell pellet was resuspended in

1.5 ml of SH media, pipetted into 1.5-ml Eppendorf tube and

inserted into DynaMag™-2 Magnet (Invitrogen #12321D). Cell

suspension was then removed from the tube leaving all magnetic

beads in the tube. Quantification of P11+1 SH-10 cells showed that

76% of cells were expressing hLAG3 upon induction by 1 μg/ml of

Doxycycline (DOX; Clontech #631311). This decreased to 59% in

P11+2 and remained around 50% in the following passages. P11+3
was used for all experiments except for the CO-IP, where a later

passage was used.

Maintenance of NSC-derived neural cultures

Human neural stem cells derived from iPSCs using manual selection

based on colony morphology (Bohaciakova et al, 2019)—
iCoMoNSCs (Hruska-Plochan et al, 2021)—were differentiated for

2 months resulting in functional neural networks (Hruska-Plochan

et al, 2021). Shortly, iCoMoNSCs were plated onto Matrigel-coated

6-well plates and grown in NSC media until reaching confluency.

Media was then changed to D3 differentiation media, which was

replaced for maturation media at 4 weeks of differentiation. For

imaging experiments, cultures were dissociated into single-cell

suspension using Papain Dissociation System (Worthington

#LK003150), passed through 70-μm cell strainer (Falcon #07-201-

431), resuspended in maturation media and re-plated into 96-well

imaging plate (Greiner Bio-One #655090) at 120,000 cells per well

as counted by CASY Cell Counter (Innovatis AG).

scRNAseq in NSC-derived neural cultures—Sample preparation

Differentiated human neural cultures (3 months old) were dissoci-

ated into single-cell suspension using Papain Dissociation System

(Worthington #LK003150), passed through 70-μm and 40-μm cell

strainers (Falcon #07-201-431 and #07-201-430) and resuspended in

HIBE++ media (Hibernate™-E Medium (Gibco #A1247601) supple-

mented with EDTA (1mM final; Invitrogen #AM9260G), HEPES

(10 mM final; Gibco #15630080), with 1× B27+ supplement (Gibco

#17504-044), 1X N2 supplement (Gibco #17502-048); 1× GlutaMAX

(Gibco #35050-061), BDNF (PeproTech #450-02), GDNF (Alomone

labs #G-240), CNTF (Alomone labs #C-240), NT-3 (PeproTech #450-

03) and IGF-1 (Stem Cell #78022) all at 20 ng/ml to 1,000 cells per

μl using to CASY Cell Counter (Innovatis AG).

scRNAseq in NSC-derived neural cultures using 10X
Genomics platform

The quality and concentration of the single-cell preparations were

evaluated using an haemocytometer in a Leica DM IL LED micro-

scope and adjusted to 1,000 cells/μl. 10,000 cells per sample were

loaded into the 10× Chromium controller, and library preparation

was performed according to the manufacturer’s indications (Chro-

mium Next GEM Single Cell 3ʹ Reagent Kits v3.1 protocol). The

resulting libraries were sequenced in an Illumina NovaSeq

sequencer according to 10× Genomics recommendations (paired-

end reads, R1 = 28, i7 = 8, R2 = 91) to a depth of around 50,000

reads per cell. The sequencing was performed at Functional Geno-

mics Center Zurich (FGCZ).

scRNAseq data analysis in NSC-derived neural cultures—Cell
clustering and differential expression on each sample

The fastq files were aligned to the Homo Sapiens reference sequence

(build GRCh38.p13) taken from Ensembl. After the alignment, each

observed barcode, UMI, gene combination was recorded as a UMI

count matrix that was then filtered to remove low RNA content cells

or empty droplets using the CellRanger software (v3.0.1). Starting

from this matrix we used the R package Seurat (version 3.1.5) (But-

ler et al, 2018) to perform the following downstream analyses per

sample: genes and cells filtering, normalization, feature selection,

scaling, dimensionality reduction, clustering and differential expres-

sion. We started by filtering out genes that did not obtain at least 1

UMI count in at least 3 cells, and discarded cells for which fewer

than 1,500 genes or more than 8,000 genes were detected and also

those that had a mitochondrial genome transcript ratio > 0.12. After

this, the data were normalized using a global-scaling normalization

method that normalizes the feature expression measurements for

each cell by the total expression, multiplies this by a scale factor

(10,000 by default) and log-transforms the result. We next calcu-

lated a subset of 2,000 features that exhibited high cell-to-cell varia-

tion in the data set. Using as input these variable features, we

performed PCA on the scaled data. Since Seurat clusters cells based

on their PCA scores, we used a heuristic method called “Elbow plot”

to determine how many principal components (PCs) we needed to

capture the majority of the signal. In this way, the cells were clus-

tered with an unsupervised graph-based clustering approach using

the first 30 first PCs and a resolution value of 0.5. Clusters were

visualized using t-distributed Stochastic Neighbor Embedding of the

principal components (spectral t-SNE) or Uniform Manifold Approx-

imation and Projection for Dimension Reduction (UMAP) as imple-

mented in Seurat. We found positive markers that defined clusters

compared to all other cells via differential expression. The test we

used was the Wilcoxon rank-sum test which assesses separation

between the expression distributions of different clusters. Genes

with an average, at least 0.25-fold difference (log-scale) between the

cells in the tested cluster and the rest of the cells, and an adjusted

P < 0.01 were declared as significant. Cell cycle phases were

predicted using a function included in the scran R package (Lun et

al, 2016) that scores each cell based on expression of canonical

marker genes for S and G2/M phases. To visually, qualitatively and

quantitatively interrogate expression of particular genes in all cells

amongst all clusters via t-SNE, UMAP, violin and distribution plots,

we used a custom-built Shiny application.

Propagation experiment in NSC-derived neural cultures: PFF-
induced synuclein aggregation and aggregates quantification

Human neural cultures were transduced as described above. 4 days

later, neural cultures were sub-cultured into 96-well plates as
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described above. hLAG3 expression was then induced by addition

of 1 μg/ml of Doxycycline (DOX; Clontech #631311) 3 weeks

(4 weeks of DOX on conditions) or 5 weeks (2 weeks of DOX on

conditions) later. 4 days post-hLGA3 expression activation, 500 nM

of human exogenous α-synuclein pre-formed fibrils (PFFs) produced

from monomeric recombinant α-synuclein by Kelvin Luk Lab as per

(Volpicelli-Daley et al, 2014) was added to half of the wells (result-

ing in 8 conditions: 2 weeks of DOX+/−/ PFFs+/− (n = 4 wells per

condition) and 4 weeks of DOX+/−/ PFFs+/− (n = 5 wells per condi-

tion). 50 μl of fresh media was added 4 days and then again 6 days

later, and 50% of media was exchanged on day 8 of the treatment

and then three times a week until the end of the experiment while

refreshing the DOX at 1 μg/ml.

Propagation experiment in NSC-derived neural cultures: Fixation,
immunofluorescence and imaging

Neural cultures were fixed with pre-warmed 16% methanol-free

formaldehyde (Pierce #28908) pipetting it directly into the culture

media, diluting it to 4% final, and incubated for 15 min at room

temperature. Cells were then washed once with PBS (Gibco

#10010015) for 10 min, once with PBS with 0.2% Triton X-100

(TX; Sigma #T9284) washing buffer (WB) for 10 min and then

blocked with 10% normal donkey serum (Sigma-Aldrich #S30-M),

0.2% TX in PBS blocking buffer filtered via Stericup (Millipore

#S2GPU02RE) for 30 min at room temperature (RT). Primary anti-

bodies were then diluted in blocking buffer (81A 1:500; D2G40

1:500; MAP2 Abcam #ab5392; EP1536Y 1:500; 17B4 1:500; MJFR1

1:1,000) and left incubated overnight (ON) at 4°C on an orbital

shaker. Cells were then washed 3 × 15 min in WB at RT, and

secondaries were then diluted in blocking buffer (Donkey anti-

rabbit AF568 (Invitrogen #A10042) 1:750; Donkey anti-mouse

AF488 (Invitrogen #A-21202) 1:750; Donkey anti-chicken AF647

(Jackson Immuno Research #JAC703-606-155) 1:500) and incu-

bated for 1.5 h at RT. Cells were then again washed 3 × 15 min in

WB at RT with DAPI (Thermo Scientific #62248) diluted to 1 ug/ml

in the final WT wash. Cells were finally washed 1 × 15 min in PBS

at RT, and PBS was then added to the wells to store the stained

cells at 4°C. Human neural cultures were imaged using GE InCell

Analyzer 2500 HS widefield microscope for quantification (40× air

objective; 2D acquisition; 182 fields of view per well; 50 μm separa-

tion to avoid counting cells twice) or with Leica SP8 Falcon

inverted confocal for high power, high-resolution microscopy (63×
oil objective; 2,096 × 2,096 pixels at 0.059 μm/pixel, approx. 20–30
z-steps per stack at 0.3 μm). Laser and detector setting were kept

same for each staining combination and all imaged conditions.

Huygens professional (Scientific Volume Imaging, Hilversum,

Netherlands) was then used to deconvolute the stacks, and the

deconvoluted images were further post-processed in fiji to produce

a flattened 2D pictures (Z-projection) for data visualization.

Propagation experiment in NSC-derived neural cultures:
signal quantification

Trained ilastik (Berg et al, 2019) algorithms were used to segment

the pixels (positive versus background) of 81A, EP1536Y and MAP2

stainings. Segmented pictures (182 images per well, per channel)

were then exported and the total signal quantified in fiji via batch

processing using a custom macro. Sum of all positive pixels of all

182 fields of view per well for 81A and EP1536Y was then expressed

as % of total MAP2 area occupied by 81A or EP1536Y signal. Statis-

tical analysis was performed in Prism (GraphPad San Diego, CA,

USA), and one-way ANOVA followed by Tukey’s multiple compar-

ison test was applied on the datasets.

Propagation experiment in NSC-derived neural cultures: PFF
preparation and treatment

PFFs were sonicated before their addition to the neural cultures as

follows: stock PFFs at 5 mg/ml were diluted in PBS (Gibco #

10010015) inside of a standard 0.5-ml Eppendorf tube to 0.1 mg/ml

reaching 250 μl final volume. The diluted PFFs were then sonicated

using ultrasonic processor (Qsonica #Q500A-110) equipped with a

cup horn (Qsonica #431C2) allowing for indirect sonication via

high-intensity ultrasonic water bath using the following settings:

Amplitude 40%, 30 cycles of 2-s on, 2-s off (resulting in total run

time of 120 s; 60-s sonication, 60-s off). Ice-cold water was freshly

poured into the cup immediately before the sonication. 210 μl of

sonicated PFFs was further diluted in 2790 μl of pre-warmed

complete maturation media (reaching 500 nM) and added to the

neural cultures (250 μl per well; all spent media was removed

before treatment).

snRNA sequencing in human frontal cortex

Single nuclei RNA sequencing (snRNAseq) analysis of human

frontal cortex was completed as previously described (Saez-Atienzar

et al, 2021). In brief, frozen frontal cortex tissue samples from 16

donors in the North American Brain Expression Consortium study

series (dbGaP Study Accession: phs001300.v1.p1, (Myers et al,

2007)) were obtained from the University of Maryland Brain and

Tissue Bank through the NIH NeuroBioBank. Nuclei were isolated

from 21 total samples from the 16 donors by ultracentrifugation

through a sucrose gradient, and the Chromium Single Cell Gene

Expression Solution v3 (10× Genomics) was used to construct

snRNAseq libraries. Libraries were pooled and sequenced using the

Illumina NextSeq 550 System. The resulting FASTQ files were

aligned and counted using Cell Ranger v3 (10× Genomics). The 21

data sets were integrated, and clustering analysis was performed

using Seurat v3.1 (Stuart et al, 2019) in R. Cell clusters comprised of

a total of 161,225 nuclei were manually assigned cell type identities

based on differential expression of known cell type marker genes.

The cell type abbreviations are as follows: “EC” = endothelial cell;

“AST” = astrocyte; “MGL” = microglia; “OPC” = oligodendrocyte

precursor cell; “ODC” = oligodendrocyte; “InN” = inhibitory

neuron; “ExN” = excitatory neuron.

scRNA sequencing in mouse mesencephalon and striatum

Single-cell suspensions were generated from the midbrain and stria-

tum of 1-year-old animals. All the animals have received a single

intra-striatal injection with either lipopolysaccharide (LPS) or

phosphate-buffered saline (PBS) and were sacrificed 48 h after

surgery as described previously (Russo et al, 2019). Brain areas

were dissociated using Adult Brain Dissociation Kit (Miltenyi Biotec

#130-107-677) following by myelin removal with 20-μl myelin
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removal beads (Miltenyi Biotec #130-096-733). Cell concentration

and viability of the single-cell solutions were determined on LunaFL

cell counter (Logos Biosystems) and adjusted to 1,000 cells per μl.
Preparations had more than 85% viability and were kept on ice

prior to single-cell encapsulation and library preparation. For encap-

sulation, 8,500 cells per sample were loaded into a Single-Cell 30

Chip of the 10× Chromium controller and libraries were generated

using 10xGenomics (Chromium Next GEM Single Cell 3ʹ Reagent
Kits v3.1 protocol). The resulting libraries were examined by Agilent

Bioanalyzer 2100 using a High Sensitivity DNA chip (Agilent).

Libraries were sequenced at NIH Intramural Sequencing Center

(NISC, Bethesda, USA) on an Illumina NovaSeq600 sequencer, using

S4 flow cell format according to 10× Genomics recommendations

(2 × 150 bp, paired-end reads, Read1 = 28, i7 Index = 8, Read2 =
91) with an estimated read depth of 100,000 reads per cell.

Sequencing data were analysed using the Cell Ranger Pipeline

(version v3.1.0) to perform quality control, sample demultiplexing,

barcode processing, alignment and single-cell 30 gene counting.

Genome Reference Consortium Mouse Build 38 (GRCm38-mm10)

Mus musculus reference transcriptome was used for alignment.

Single-cell data from PBS- or LPS-treated animals were combined

into a single Seurat object and filtered for genes detected in more

than three cells and for cells that had more than 500 genes (fea-

tures). These data sets were normalized using SCTransform v0.2.1

and integrated by pair-wise comparison of anchor gene expression

within the Seurat package v3.1 in R (Butler et al, 2018). Shared

nearest neighbour-based clustering was used to identify distinct cell

clusters, which were then manually assigned cell type identities

based on differential expression of known cell type marker genes.

iPSC-derived dopaminergic cultures

iPSCs were differentiated as previously described (Bengoa-

Vergniory et al, 2020). Dopaminergic neuronal cultures from control

lines and GBA N370S PD patients were harvested at 35DIV and

stained for TH (ab152, Millipore) or harvested for Western blotting.

Western blotting

Whole mouse brains were homogenized in RIPA buffer, whereas

mouse primary cortical cultures and activated T lymphocytes were

lysed in lysis buffer (50 mM Tris, 150 mM NaCl, 1% Triton X-100)

containing protease and phosphatase inhibitors (Roche, New York,

NY, USA). Total protein contents were quantified using the BCA

assay (Pierce). For Western blotting, total proteins were separated

on SDS–polyacrylamide gels (4–12%, Invitrogen) and transferred

onto PVDF membranes. Membranes were blocked in 5% SureBlock

(LubioScience) for 1 h at RT and incubated overnight at 4°C with

anti-LAG3 mouse monoclonal antibody 4-10-C9 (1:1,000).

Membranes were washed three times with PBS-Tween and incu-

bated with goat-anti-mouse IgG conjugated with horseradish peroxi-

dase (1:10,000). The acquisition was performed using ECL

Crescendo substrate (Merck Millipore) and imaged with Fusion Solo

S (Vilber). After the acquisition, the membranes were incubated for

30 min at RT with anti-β-actin (1:10,000, A3854 Sigma-Aldrich),

which was used as a loading control.

For IP enrichment, 500 μg of total proteins of mouse brain homo-

genates and primary cultures and 10 μg of total proteins of activated

T lymphocytes were incubated overnight with 50 μl of Dynabeads™

(Thermo Fisher) previously conjugated with 4-10-C9 antibody.

Beads were washed three times with PBS, resuspended in Laemmli

buffer and dissociated by boiling for 5 min at 95°C. The super-

natants were loaded onto SDS–polyacrylamide gels and processed

as described above. Target antigens were detected using an anti-

LAG3 rabbit polyclonal antibody (1:1,000, B15026) and goat-anti-

rabbit IgG conjugated to horseradish peroxidase (HRP) (1:1,000).

Mouse LAG3 Sandwich ELISA

High-binding 384-well SpectraPlates (Perkin Elmer) were coated

with mouse mAb 4-10-C9 at a concentration of 1 μg/ml in sterile

PBS and at a volume of 20 μl/well. The plates were incubated for

1 hr at 37°C and washed 3× with 1× PBS 0.1% Tween-20. Plates

were then blocked with 5% milk in 1× PBS 0.1% Tween-20

(40 μl/well) and incubated for 1 h at RT. The blocking buffer was

subsequently removed. The cell lysates/organ homogenates were

added at a total protein concentration of 1,000 μg/ml (or, if indi-

cated, at 500 μg/ml due to insufficient sample concentration),

20 μl/well, in quadruplicates and mouse recombinant LAG324–442,

was added at 5 μg/ml at highest concentration, 40 μl/well into the

first well of the dilution series, and a 15-fold 1:2 serial dilution of

the recombinant proteins was performed (end volume for each

well: 20 μl). The buffer used for sample dilution: 1% milk in 1×
PBS 0.1% Tween-20. The plates were incubated for 1 h at RT,

followed by a 3× wash with 1x PBS 0.1% Tween-20. To detect the

presence of LAG3, we used rat mAb C9B7W (for mouse LAG3), at

1 μg/ml and at 20 μl/well. The plates were incubated for 1 h at

RT, followed by a 5× wash with 1× PBS 0.1% Tween-20. To

detect the presence of the detection antibody, we used HRP-anti-

rat IgG (1:2,000, for mouse LAG3, HRP Donkey anti-rat IgG

(H + L), 712-035-153, Jackson), at volume of 20 μl/well. The

plates were then incubated for 1 h at RT and washed 3× with 1×
PBS 0.1% Tween-20. TMB was dispensed at a volume of 20 μl/
well, followed by a 5-min incubation, and the stop solution (0.5 M

H2SO4) was added at a volume of 20 μl/well. The absorbance at

450 nm was read on the EnVision (Perkin Elmer) reader. Finally,

the measured optical densities were interpolated (independently

for all replicates) using the mouse recombinant LAG3 standards

(values that are in the linear range) and LAG3 expression per μg
total protein was depicted for all samples.

RNA extraction and RT–qPCR

Mouse primary cultures were collected and lysed in lysis buffer and

TRIzol LS Reagent in a ratio 1:3. Samples were supplemented with

0.2 ml of chloroform per 1 ml of TRIzol and centrifugated. The

aqueous phase was collected, and the RNA was precipitated with

subsequent addition of isopropanol and ice-cold 75% ethanol.

Pellets were resuspended in ultrapure, RNAse-free water and quanti-

fied at the NanoDrop. Genomic DNA elimination and reverse tran-

scription were performed using QuantiTect Reverse Transcription

Kit (Qiagen) according to manufacturer’s instructions.

To generate a standard curve for transcript quantification, a

commercial plasmid encoding full-length mouse LAG3 CDS (Gene-

Copoeia, Mm0357-02) was used as standard. The number of DNA

molecules in 1 μl was calculated using the following formula:
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copynumber
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¼ng

μl
� 6:022�1023

numberbpvectorþLAG3amplicon bpð Þ �109 �650

Serial dilutions of the standard containing known numbers of

molecules and 25 ng of total cDNA of the samples were amplified in

RT–qPCR using mouse LAG3-specific primers (Liu et al, 2018). The

number of transcripts per ng of RNA was calculated by interpolating

the threshold cycle values of the samples into the standard curve

and then dividing by the ng of RNA used in the RT–qPCR.

ELISA with fibrils

High-binding 384-well SpectraPlates (Perkin Elmer) were coated

with proteins of interest at a concentration of 1 μg/ml in sterile PBS

and at a volume of 20 μl/well. The plates were incubated for 1 h at

37°C and washed 3× with 1× PBS 0.1% Tween-20. Plates were then

blocked with 5% SureBlock (Lubio) in 1× PBS 0.1% Tween-20

(40 μl/well) and incubated for 1 h at RT. The blocking buffer was

subsequently removed. Monomer equivalents of fibrils (α-synuclein
or ASC) were added at a concentration of 0.125 μM, 20 μl/well and

a 13-fold 1:2 serial dilution was performed (end volume for each

well: 20 μl). The buffer used for sample dilution: 1% SureBlock in

1× PBS 0.1% Tween-20. The plates were incubated overnight at

4°C, followed by a 5× wash with 1× PBS 0.1% Tween-20. In a

control experiment, monomer equivalents of fibrils (α-synuclein or

ASC) were coated onto high-binding 384-well SpectraPlates (Perkin

Elmer) as serial dilutions (13-fold 1:2 serial dilution), starting at a

concentration of 0.125 μM, in sterile PBS and at a volume of 20 μl/
well, incubated for 1 h at 37°C, washed 3× with 1× PBS 0.1%

Tween-20 and blocked with SureBlock. Next, antibodies directed

against the fibrils or monomeric proteins were added at 1 μg/ml and

at 20 μl/well, in sample buffer. The plates were incubated for 1 h at

RT, followed by a 3× wash with 1× PBS 0.1% Tween-20. To detect

the presence of the detection antibody, we used HRP-anti-rabbit IgG

(1:2,000, HRP Goat anti-Rabbit IgG (H + L), 111-035-045, Jackson),

at volume of 20 μl/well. The plates were then incubated for 1 h at

RT and washed 3× with 1× PBS 0.1% Tween-20. TMB was

dispensed at a volume of 20 μl/well, followed by a 5-min incuba-

tion, and the stop solution (0.5 M H2SO4) was added at a volume of

20 μl/well. The absorbance at 450 nm was read on the EnVision

(Perkin Elmer) reader, and the respective curves were plotted in

GraphPad Prism.

Microfluidic diffusional sizing

Microfluidic diffusional sizing (MDS) measurements were

performed as reported previously (Arosio et al, 2016; Wright et al,

2018; Scheidt et al, 2019). Briefly, microfluidic devices were fabri-

cated in polydimethylsiloxane (PDMS) applying standard soft-

lithography methods and subsequently bonded onto a glass micro-

scopy slide after activation with oxygen plasma. Samples and buffer

were loaded onto the chip from sample reservoirs connected to the

inlets and the flow rate controlled by applying a negative pressure

at the outlet using a glass syringe (Hamilton, Bonaduz, Switzerland)

and a syringe pump (neMESYS, Cetoni GmbH, Korbussen,

Germany). Imaging was performed using a custom-built inverted

epifluorescence microscope supplied with a charge-coupled-device

camera (Prime 95B, Photometrics, Tucson, AZ, USA) and brightfield

LED light sources (Thorlabs, Newton, NJ, USA). Lateral diffusion

profiles were recorded at 4 different positions along the microfluidic

channels. Varying fractions of unlabelled ligands were added to a

solution containing labelled receptors of concentrations varying

between 10 nM and 10 μM, and PBS (containing 0.01% Tween-20,

SA) was added to give a constant volume of 30 μl. The samples

were incubated at room temperature for 60 min, and the size of the

formed immunocomplex was determined through measuring the

hydrodynamic radius, Rh, with microfluidic diffusional sizing, as

described above. Dissociation constants (KD) were determined using

the Langmuir binding isotherm, as previously reported (Scheidt

et al, 2019),

Rh ¼
½L�tot þα½X�0þKD�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α½L�tot þ½X�0þKD

� �2�4α½L�tot½X�0
q

2

0
@

1
A ΔR
α½X�0

þR0

with [L]tot the concentration of ligand added, [X]0 the concentra-

tion of labelled protein, KD the dissociation constant, α the stoi-

chiometric binding ratio, ΔR the difference in radius between fully

bound and fully unbound and R0 the radius of fully unbound

labelled protein.

Co-immunoprecipitation

SH-SY5Y cells expressing human LAG3 under the control of a

doxycycline-inducible promoter were plated in 6-well plates and

treated with doxycycline (1 μg/ml) for 72 h to induce the expression

of LAG3. Monomeric and fibrillar α-synuclein (1 μM) and PBS (neg-

ative control) were added to the culture medium and incubated for

3 h at 37°C. Cells were lysed in lysis buffer (50 mM Tris, pH 8,

150 mM NaCl, 1% Triton, protease and phosphatase inhibitors),

and 500 μg of total proteins was further processed. 30 μl was

collected from each sample and used as control inputs. Samples

were pre-incubated with Dynabeads Protein G to eliminate any

possible material that could bind unspecifically to the beads. Subse-

quently, samples were incubated with Dynabeads functionalized

with either anti-α-synuclein or anti-LAG3 antibody and left over-

night on a rotor wheel at 4°C. The day after, beads were collected,

resuspended in Laemmli buffer and boiled for 5 min to dissociate

the precipitated fractions. Supernatants were then loaded onto an

SDS–PAGE and processed as described above.

Immunofluorescence

Primary cultures were fixed at DIV 12-14 with 4% PFA supple-

mented with 4% sucrose, followed by incubation in 10% donkey

serum + 0.2% Triton X-100 for 1 h at room temperature. For

immunostaining, antibodies were diluted in blocking buffer (anti-

MAP2 1:1,000; anti-GFAP 1:1,000; anti-LAG3 4-10-C9 1:1,000; anti-

Iba1 1:1,000) and incubated overnight at 4°C. Samples were then

washed 3 times with PBS and incubated with fluorescently conju-

gated secondary antibodies (1:400) and DAPI (1:10,000).

Preparation and treatment of hippocampal slice cultures

HSCs were prepared from pups at postnatal days 4–6 (P4-6) accord-

ing to previously published protocols (Novotny et al, 2016). After
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decapitation, the brains of the pups were aseptically removed, and

the hippocampi were dissected and cut perpendicular to the longi-

tudinal axis into 350-μm sections with a tissue chopper. Carefully

selected intact hippocampal sections were transferred into petri

dishes containing ice-cold buffer solution (minimum essential

medium (MEM) supplemented with 2 mM GlutaMAX™ at pH 7.3).

Three sections were placed onto a humidified porous membrane in

a well of a 6-well plate with 1.2 ml culture medium (20% heat-

inactivated horse serum in 1× MEM complemented with

GlutaMax™ (1 mM), ascorbic acid (0.00125%), insulin (1 μg/ml),

CaCl2 (1 mM), MgSO4 (2 mM) and D-glucose (13 mM) adjusted to

pH 7.3). HSCs were kept at 37°C in humidified CO2-enriched atmo-

sphere. The culture medium was changed three times per week.

HSCs were kept for 10 days without any experimental treatment.

At day 10, 1 μl of PFF (5 μg/μl) was pipetted on top of each

culture.

α-Synuclein PFF preparation

We used protocols developed by the Melki and the Luk laboratories.

In the Melki protocol, expression in E. coli, purification and quality

control of human recombinant monomeric wt α-synuclein was done

as described (Bousset et al, 2013). For fibril formation, soluble wt α-
synuclein was incubated in Tris–HCl buffer (50 mM Tris–HCl, pH
7.5, 150 mM KCl) at 37°C under continuous shaking for 5 days and

formation of fibrils was assessed with Thioflavin T. The fibrils were

quality checked by transmission electron microscopy after negative

staining before and after fragmentation. Their limited proteolytic

pattern was also assessed (Bousset et al, 2013). The average size of

the fibrils after fragmentation 47 � 5 nm was derived from length

distribution measurements, and their average molecular weight

(16,200 Da) was derived from analytical ultracentrifugation sedi-

mentation velocity measurements. The fibrils (350 μM) were

aliquoted (6 μl per tube), flash-frozen in liquid nitrogen and stored

at −80°C.
In the Luk protocol, expression in E. coli, purification and qual-

ity control of human recombinant monomeric wt α-synuclein and

assembly into PFFs was done as described (Luk et al, 2009;

Volpicelli-Daley et al, 2014). α-synuclein was expressed in E. coli

and purified to reach a final concentration of monomeric α-
synuclein of around 30 mg/ml. Monomeric α-synuclein in 1.5-ml

microcentrifuge tubes at a volume of 500 μl and a final concentra-

tion of 5 mg/ml was assembled into α-synuclein PFFs by shaking

for 7 days at 1,000 RPM in a thermomixer at 37°C. The quality of

the fibrils was assessed as detailed earlier (Volpicelli-Daley et al,

2014).

Analysis of human α-synuclein expression in CSF of A53T LAG3−/−

and LAG3+/+ animals using SIMOA

Samples of the cerebrospinal fluid (CSF) were collected in a stan-

dardized manner adapted from the methodology of the Alzheimer’s

Association external quality control programme used for human

CSF (Mattsson et al, 2011) as described previously (Schelle et al,

2017). Sampling was performed under a dissecting microscope.

Mice were deeply anaesthetized with a mixture of ketamine

(100 mg/kg) and xylazine (10 mg/kg) and placed on a heat pad to

maintain a constant body temperature during the whole procedure.

After incision of the overlying skin and retraction of the posterior

neck muscles, the dura mater covering the cisterna magna was care-

fully cleaned with cotton swabs, PBS and ethanol. In case of microb-

leeds in the surrounding tissue, hemostyptic gauze (Tabotamp,

Ethicon) was used to keep the dura mater spared from any blood

contamination. Finally, the dura was punctured with a 30G needle

(BD Biosciences) and CSF was collected with a 20 μl gel loader tip
(Eppendorf, shortened), transferred into 0.5-ml polypropylene tubes

(Eppendorf) and placed on ice. Typically, a total volume of 15–25 μl
was collected per mouse. The samples were centrifuged for 10 min

at 2,000× g, visually inspected for any pellet revealing blood

contamination, aliquoted (5 μl) and stored at –80°C until further

usage. Samples with suspected blood or cell contamination were not

used for any further experiments. CSF α-synuclein concentrations

were measured by Single Molecule Array (SIMOA) technology using

the SIMOA Human Alpha-Synuclein Discovery Kit according to the

manufacturer’s instructions (Quanterix, Billerica, MA, USA). Mouse

CSF samples were diluted 1:300 with Alpha-Synuclein Sample Dilu-

ent before the measurement and analysed on a SIMOA HD-1

Analyzer in duplicates.

Histology and Immunohistochemistry

Brains were cut in 25 μm-thick sagittal sections on a freeze-sliding

microtome (Leica SM 2000R) and subsequently emerged in cryopro-

tectant (35% ethylene glycol, 25% glycerol in PBS) and stored on

−20°C. Hippocampal cultures were fixed after 5 weeks of cultivation

period with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer

(PB), pH 7.4 for 2 h. Cultures were rinsed three times with 0.1 M

PBS for 10 min. The Millipore membrane with the fixed cultures

was cut out and mounted onto a planar agar block. The cultures

were sliced into 50-μm sections with a vibratome. Antigen retrieval

was enhanced by heating the sections in 10 mM citrate buffer

(1.8 mM citric acid, 8.2 mM trisodium citrate [pH 6.0]; 90°C;
35 min). For detection of α-synuclein phosphorylated at ser-129, we

used a rabbit monoclonal pS129 antibody (Abcam, EP1536Y,

1:1,000) and followed the standard protocols provided with the

VECTASTAIN Elite ABC Kit and the SG blue kit (Vector Laborato-

ries, USA) (brain sections) or used an Alexa-fluorophore-conjugated

secondary antibody (goat-anti-rabbit Alexa-568; Thermo Fisher,

A11011) in a concentration of 1:250 (slice cultures). For Thioflavin

S staining, sections were incubated for 5 min with freshly prepared

filtered Thioflavin S solution (3% w/v Thioflavin S in Milli-Q

H2O) and washed 2× in 70% EtOH and 3× in Milli-Q H2O for

10 min each.

Quantification of immunohistochemical stainings in
slice cultures

For the quantification of the pS129-positive inclusions in HSCs,

whole culture mosaic images were acquired on an Axioplan 2 imag-

ing microscope (Plan Neofluar 10×/0.50 objective lens; Zeiss).

Images were blinded, colour channels were split, background was

subtracted (rolling ball radius 50 pixels), and the intensity threshold

was manually adjusted. On each mosaic, the percentage of pS129-

positive signal over the whole culture was calculated. Statistical

analysis was done with GraphPad Prism (v.9), using unpaired two-

tailed t test.

ª 2021 The Authors EMBO Molecular Medicine 13: e14745 | 2021 17 of 20

Marc Emmenegger et al EMBO Molecular Medicine



Data availability

The raw data underlying this study will be made available upon

request. While the availability of human or murine samples is

limited, we will be doing our utmost to share material provided

strong scientific rationale. This study includes no data deposited in

external repositories.

Expanded View for this article is available online.
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