22 research outputs found

    Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair

    Get PDF
    The nonhomologous end-joining (NHEJ) pathway is essential for radioresistance and lymphocyte-specific V(D)J (variable [diversity] joining) recombination. Defects in NHEJ also impair hematopoietic stem cell (HSC) activity with age but do not affect the initial establishment of HSC reserves. In this paper, we report that, in contrast to deoxyribonucleic acid (DNA)–dependent protein kinase catalytic subunit (DNA-PKcs)–null mice, knockin mice with the DNA-PKcs(3A/3A) allele, which codes for three alanine substitutions at the mouse Thr2605 phosphorylation cluster, die prematurely because of congenital bone marrow failure. Impaired proliferation of DNA-PKcs(3A/3A) HSCs is caused by excessive DNA damage and p53-dependent apoptosis. In addition, increased apoptosis in the intestinal crypt and epidermal hyperpigmentation indicate the presence of elevated genotoxic stress and p53 activation. Analysis of embryonic fibroblasts further reveals that DNA-PKcs(3A/3A) cells are hypersensitive to DNA cross-linking agents and are defective in both homologous recombination and the Fanconi anemia DNA damage response pathways. We conclude that phosphorylation of DNA-PKcs is essential for the normal activation of multiple DNA repair pathways, which in turn is critical for the maintenance of diverse populations of tissue stem cells in mice

    Genética y biología molecular de la anemia de Fanconi

    Get PDF
    La anemia de Fanconi (FA) es un desorden genético de naturaleza autosómica recesiva y caracterizado por una serie de malformaciones congénitas, fallo de médula ósea y una elevada predisposición a adquirir tumores sólidos y leucemia mieloide aguda. Las células FA, poseen una elevada inestabilidad cromosómica tanto espontánea como inducida por agents inductors de enlaces cruzados. Otros rasgos celulares son la sensibilidad frente al daño oxidativo, fallos en el ciclo cellular, niveles elevados de apoptosis regulación deficiente de la transcripción y disfunción telomérica. Hasta el momento, se ha descrito que existen 12 genes diferentes que pueden causar esta enfermedad, aunque no todos ellos han sido clonados y caracterizados. De entre ellos, FANCA es el que más frecuentemente se halla mutado entre la población y presenta un amplio espectro de mutaciones, siendo las grandes deleciones una de las principales.Un conocimiento más profundo de la biología de esta enfermedad nos va a permitir adquirir una visión más global de la reparación del daño en el DNA en respuesta a determinados agentes así como un mejor entendimiento de las interacciones moleculares que se establecen entre distintos síndromes genéticos y que tienen un indiscutible valor diagnóstico y terapéutico.En este trabajo de tesis se han planteado cuatro objetivos principales y generales, que son:- Establecer potenciales relaciones entre las características hematológicas de la enfermedad y algunas características celulares tales como el acortamiento telomérico y las anomalías cromosómicas numéricas o estructurales.- Caracterizar genéticamente a la población afectada por la anemia de Fanconi española.- Explorar el papel de la ruta FA en la biología y el mantenimiento telomérico.- Estudiar la biología molecular de la ruta FA en respuesta al daño genómico.Con los estudios llevados a cabo, se ha observado un acortamiento telomérico acelerado en los pacientes Fanconi acompañado de un incremento en el número de fragmentos extrateloméricos y fusiones, aunque este exceso de fusiones terminales ocurre de manera independiente a la presencia de TRF2 en el telómero. Además, este acortamiento no está directamente relacionado con la severidad de la enfermedad a nivel hematológico. Si que se relaciona, sin embargo con la enfermedad hematológica la frecuencia espontánea de roturas cromosómicas.Por otra parte, se ha estudiado y caracterizado exhaustivamente la población Fanconi española, haciendo especial énfasis en los portadores de mutaciones en el gen FANCA y en la población de etnia gitana, poseedores de la mayor frecuencia de portadores de mutaciones en FANCA a nivel mundial.Un dato importante extraído de estos estudios es la participación de la histona H2AX dentro de la ruta Fanconi en respuesta a la irradiación con UV-C.Fanconi anemia (FA) is an autosomic recessive genetic disorder characterized by a subset of congenital malformations, bone marrow failure and a high predisposition to solid tumours and acute myeloid leukaemia acquisition. FA cells harbour a high spontaneous and induced by interstrand crosslinking agents chromosomic instability. Some other cellular features are the sensibility in front of oxidative damage, cell cycle failure, increased levels of apoptosis, impaired transcription regulation and telomeric dysfunction.Up to date, there have been described 12 genes that cause this disease though not all of them have been cloned and characterized so far. Among them, FANCA is the most prevalent gene in the affected population and it can be affected by a wide spectrum of mutations, being large deletions one of the most common. Acquire a sight about the biology of this illness will allow us having a wider view about/on DNA damage repair in response to some agents. At the same time, we can have a better knowledge about the molecular interactions established among different genetic syndromes with an indisputable diagnostic and therapeutic value. Within the present thesis four main objectives have been raised:- Establishment of potential relationship between the haematological disease and telomere shortening, and numerical or structural chromosomal abnormalities - Genetic characterization of Fanconi anemia Spanish population- Explore the role of the FA pathway on telomeric biology and maintenance- Study the molecular biology of the FA pathway in response to genomic damage As a conclusion of these studies, an accelerated telomeric shortening together with and increased number of extratelomeric fragments and end-to-end fusions has been observed in the FA patients compared to age-matched controls. The excess of terminal fusions is not related with an impaired role of TRF2. This telomeric shortening is not related with the hematologic disease observed in these patients.However, the spontaneous frequency of chromosomal breaks seems to correlate with the haematological severity.Spanish FA population has been extensively studied and characterized, especially those belonging to FA-A complementation group and the gypsy population, which has come out to be the group with the highest frequency of FANCA mutated carriers worldwide.An important point unraveled from our studies is the role of histone H2AX in the FA pathway in response to UV-C irradiation

    Genética y biología molecular de la anemia de Faconi

    No full text
    Consultable des del TDXTítol obtingut de la portada digitalitzadaLa anemia de Fanconi (FA) es un desorden genético de naturaleza autosómica recesiva y caracterizado por una serie de malformaciones congénitas, fallo de médula ósea y una elevada predisposición a adquirir tumores sólidos y leucemia mieloide aguda. Las células FA, poseen una elevada inestabilidad cromosómica tanto espontánea como inducida por agents inductors de enlaces cruzados. Otros rasgos celulares son la sensibilidad frente al daño oxidativo, fallos en el ciclo cellular, niveles elevados de apoptosis regulación deficiente de la transcripción y disfunción telomérica. Hasta el momento, se ha descrito que existen 12 genes diferentes que pueden causar esta enfermedad, aunque no todos ellos han sido clonados y caracterizados. De entre ellos, FANCA es el que más frecuentemente se halla mutado entre la población y presenta un amplio espectro de mutaciones, siendo las grandes deleciones una de las principales. Un conocimiento más profundo de la biología de esta enfermedad nos va a permitir adquirir una visión más global de la reparación del daño en el DNA en respuesta a determinados agentes así como un mejor entendimiento de las interacciones moleculares que se establecen entre distintos síndromes genéticos y que tienen un indiscutible valor diagnóstico y terapéutico. En este trabajo de tesis se han planteado cuatro objetivos principales y generales, que son: - Establecer potenciales relaciones entre las características hematológicas de la enfermedad y algunas características celulares tales como el acortamiento telomérico y las anomalías cromosómicas numéricas o estructurales. - Caracterizar genéticamente a la población afectada por la anemia de Fanconi española. - Explorar el papel de la ruta FA en la biología y el mantenimiento telomérico. - Estudiar la biología molecular de la ruta FA en respuesta al daño genómico. Con los estudios llevados a cabo, se ha observado un acortamiento telomérico acelerado en los pacientes Fanconi acompañado de un incremento en el número de fragmentos extrateloméricos y fusiones, aunque este exceso de fusiones terminales ocurre de manera independiente a la presencia de TRF2 en el telómero. Además, este acortamiento no está directamente relacionado con la severidad de la enfermedad a nivel hematológico. Si que se relaciona, sin embargo con la enfermedad hematológica la frecuencia espontánea de roturas cromosómicas. Por otra parte, se ha estudiado y caracterizado exhaustivamente la población Fanconi española, haciendo especial énfasis en los portadores de mutaciones en el gen FANCA y en la población de etnia gitana, poseedores de la mayor frecuencia de portadores de mutaciones en FANCA a nivel mundial. Un dato importante extraído de estos estudios es la participación de la histona H2AX dentro de la ruta Fanconi en respuesta a la irradiación con UV-C.Fanconi anemia (FA) is an autosomic recessive genetic disorder characterized by a subset of congenital malformations, bone marrow failure and a high predisposition to solid tumours and acute myeloid leukaemia acquisition. FA cells harbour a high spontaneous and induced by interstrand crosslinking agents chromosomic instability. Some other cellular features are the sensibility in front of oxidative damage, cell cycle failure, increased levels of apoptosis, impaired transcription regulation and telomeric dysfunction. Up to date, there have been described 12 genes that cause this disease though not all of them have been cloned and characterized so far. Among them, FANCA is the most prevalent gene in the affected population and it can be affected by a wide spectrum of mutations, being large deletions one of the most common. Acquire a sight about the biology of this illness will allow us having a wider view about/on DNA damage repair in response to some agents. At the same time, we can have a better knowledge about the molecular interactions established among different genetic syndromes with an indisputable diagnostic and therapeutic value. Within the present thesis four main objectives have been raised: - Establishment of potential relationship between the haematological disease and telomere shortening, and numerical or structural chromosomal abnormalities - Genetic characterization of Fanconi anemia Spanish population - Explore the role of the FA pathway on telomeric biology and maintenance - Study the molecular biology of the FA pathway in response to genomic damage As a conclusion of these studies, an accelerated telomeric shortening together with and increased number of extratelomeric fragments and end-to-end fusions has been observed in the FA patients compared to age-matched controls. The excess of terminal fusions is not related with an impaired role of TRF2. This telomeric shortening is not related with the hematologic disease observed in these patients. However, the spontaneous frequency of chromosomal breaks seems to correlate with the haematological severity. Spanish FA population has been extensively studied and characterized, especially those belonging to FA-A complementation group and the gypsy population, which has come out to be the group with the highest frequency of FANCA mutated carriers worldwide. An important point unraveled from our studies is the role of histone H2AX in the FA pathway in response to UV-C irradiation

    Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining

    No full text
    DNA double strand breaks (DSBs) formed during S phase are preferentially repaired by homologous recombination (HR), whereas G(1) DSBs, such as those occurring during immunoglobulin class switch recombination (CSR), are repaired by non-homologous end joining (NHEJ). The DNA damage response proteins 53BP1 and BRCA1 regulate the balance between NHEJ and HR. 53BP1 promotes CSR in part by mediating synapsis of distal DNA ends, and in addition, inhibits 5’ end resection. BRCA1 antagonizes 53BP1 dependent DNA end-blocking activity during S phase, which would otherwise promote mutagenic NHEJ and genome instability. Recently, it was shown that supra-physiological levels of the E3 ubiquitin ligase RNF168 results in the hyper-accumulation of 53BP1/BRCA1 which accelerates DSB repair. Here, we ask whether increased expression of RNF168 or 53BP1 impacts physiological versus mutagenic NHEJ. We find that the anti-resection activities of 53BP1 are rate-limiting for mutagenic NHEJ but not for physiological CSR. As heterogeneity in the expression of RNF168 and 53BP1 is found in human tumors, our results suggest that deregulation of the RNF168/53BP1 pathway could alter the chemosensitivity of BRCA1 deficient tumors

    Postcards from Abroad

    No full text
    In this section called ‘postcards from abroad’ we propose to diversify and open up the understandings and practices of repair itself, engaging material repair in conversation with other types of repair, coming from fields of creation and knowledge other than design. Although there could be many other ‘postcards’ from different reparative places, here we invited: DNA repair in the field of genetics; soil bioremediation from the perspective of edaphology; psychotherapy as a form of emotional and psychological ‘repair’; memory repair from the field of restorative justice and human rights; home maintenance and cleaning as a form of domestic infrastructure repair and care; repair of electrical and electronic devices by activist collectives for waste prevention; repair of scientific observation instruments in the field of astronomy; and neuro-rehabilitation and physical rehabilitation from the first-person experience of long COVID. We hope these postcards provide a plurality of visions and actions on repair that might lead to resonances, inspirations, and cross-fertilizations among the various forms of repair.

    A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse

    No full text
    H4K20 methylation is a broad chromatin modification that has been linked with diverse epigenetic functions. Several enzymes target H4K20 methylation, consistent with distinct mono-, di-, and trimethylation states controlling different biological outputs. To analyze the roles of H4K20 methylation states, we generated conditional null alleles for the two Suv4-20h histone methyltransferase (HMTase) genes in the mouse. Suv4-20h-double-null (dn) mice are perinatally lethal and have lost nearly all H4K20me3 and H4K20me2 states. The genome-wide transition to an H4K20me1 state results in increased sensitivity to damaging stress, since Suv4-20h-dn chromatin is less efficient for DNA double-strand break (DSB) repair and prone to chromosomal aberrations. Notably, Suv4-20h-dn B cells are defective in immunoglobulin class-switch recombination, and Suv4-20h-dn deficiency impairs the stem cell pool of lymphoid progenitors. Thus, conversion to an H4K20me1 state results in compromised chromatin that is insufficient to protect genome integrity and to process a DNA-rearranging differentiation program in the mouse

    Hypomorphic Mutations in the Central Fanconi Anemia Gene FANCD2 Sustain a Significant Group of FA-D2 Patients with Severe Phenotype. Running title : FA-D2 phenotype and FANCD2 mutations

    No full text
    Premi a l'excel·lència investigadora. Àmbit de les Ciències de la Salut. 2008FANCD2 is an evolutionarily conserved Fanconi anemia (FA) gene that plays a central role in DNA double-strand type damage responses. Using complementation assays and immunoblotting, a consortium of American and European groups assigned 29 FA patients from 23 families and 4 additional unrelated patients to complementation group FA-D2. This amounts to 3 to 6% of FA patients registered in various datasets. Malformations are frequent in FA-D2 patients and hematological manifestations appear earlier and progress more rapidly when compared to patients from all other FA groups combined, as represented by the International Fanconi Anemia Registry, IFAR. FANCD2 is flanked by two pseudogenes. Mutation analysis revealed the expected total of 66 mutated alleles, 34 of which result in aberrant splicing patterns. Many mutations are recurrent and have ethnic associations and shared alleles. There were no biallelic null mutations so that residual FANCD2 protein of both isotypes was observed in all patients' cell lines available. These analyses suggest that unlike in a knock-out mouse model, total absence of FANCD2 is not existing in FA-D2 patients due to constraints on viable combinations of FANCD2 mutations. Although hypomorphic mutations are involved, the result generally is a relatively severe form of FA
    corecore