100 research outputs found
Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer
X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacteria infections. Using Btk- and Tec-deficient mice (BtkTec-/-) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)-treated BtkTec-/- mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec-/- recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, revocery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG3 levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA
Antigen-specific clonal expansion and cytolytic effector function of CD8+ T lymphocytes depend on the transcription factor Bcl11b
CD8+ T lymphocytes mediate the immune response to viruses, intracellular bacteria, protozoan parasites, and tumors. We provide evidence that the transcription factor Bcl11b/Ctip2 controls hallmark features of CD8+ T cell immunity, specifically antigen (Ag)-dependent clonal expansion and cytolytic activity. The reduced clonal expansion in the absence of Bcl11b was caused by altered proliferation during the expansion phase, with survival remaining unaffected. Two genes with critical roles in TCR signaling were deregulated in Bcl11b-deficient CD8+ T cells, CD8 coreceptor and Plcγ1, both of which may contribute to the impaired responsiveness. Bcl11b was found to bind the E8I, E8IV, and E8V, but not E8II or E8III, enhancers. Thus, Bcl11b is one of the transcription factors implicated in the maintenance of optimal CD8 coreceptor expression in peripheral CD8+ T cells through association with specific enhancers. Short-lived Klrg1hiCD127lo effector CD8+ T cells were formed during the course of infection in the absence of Bcl11b, albeit in smaller numbers, and their Ag-specific cytolytic activity on a per-cell basis was altered, which was associated with reduced granzyme B and perforin
Central nervous system mast cells in peripheral inflammatory nociception
<p>Abstract</p> <p>Background</p> <p>Functional aspects of mast cell-neuronal interactions remain poorly understood. Mast cell activation and degranulation can result in the release of powerful pro-inflammatory mediators such as histamine and cytokines. Cerebral dural mast cells have been proposed to modulate meningeal nociceptor activity and be involved in migraine pathophysiology. Little is known about the functional role of spinal cord dural mast cells. In this study, we examine their potential involvement in nociception and synaptic plasticity in superficial spinal dorsal horn. Changes of lower spinal cord dura mast cells and their contribution to hyperalgesia are examined in animal models of peripheral neurogenic and non-neurogenic inflammation.</p> <p>Results</p> <p>Spinal application of supernatant from activated cultured mast cells induces significant mechanical hyperalgesia and long-term potentiation (LTP) at spinal synapses of C-fibers. Lumbar, thoracic and thalamic preparations are then examined for mast cell number and degranulation status after intraplantar capsaicin and carrageenan. Intradermal capsaicin induces a significant percent increase of lumbar dural mast cells at 3 hours post-administration. Peripheral carrageenan in female rats significantly increases mast cell density in the lumbar dura, but not in thoracic dura or thalamus. Intrathecal administration of the mast cell stabilizer sodium cromoglycate or the spleen tyrosine kinase (Syk) inhibitor BAY-613606 reduce the increased percent degranulation and degranulated cell density of lumbar dural mast cells after capsaicin and carrageenan respectively, without affecting hyperalgesia.</p> <p>Conclusion</p> <p>The results suggest that lumbar dural mast cells may be sufficient but are not necessary for capsaicin or carrageenan-induced hyperalgesia.</p
Progress Toward a Human CD4/CCR5 Transgenic Rat Model for De Novo Infection by Human Immunodeficiency Virus Type 1
The development of a permissive small animal model for the study of human immunodeficiency virus type (HIV)-1 pathogenesis and the testing of antiviral strategies has been hampered by the inability of HIV-1 to infect primary rodent cells productively. In this study, we explored transgenic rats expressing the HIV-1 receptor complex as a susceptible host. Rats transgenic for human CD4 (hCD4) and the human chemokine receptor CCR5 (hCCR5) were generated that express the transgenes in CD4+ T lymphocytes, macrophages, and microglia. In ex vivo cultures, CD4+ T lymphocytes, macrophages, and microglia from hCD4/hCCR5 transgenic rats were highly susceptible to infection by HIV-1 R5 viruses leading to expression of abundant levels of early HIV-1 gene products comparable to those found in human reference cultures. Primary rat macrophages and microglia, but not lymphocytes, from double-transgenic rats could be productively infected by various recombinant and primary R5 strains of HIV-1. Moreover, after systemic challenge with HIV-1, lymphatic organs from hCD4/hCCR5 transgenic rats contained episomal 2–long terminal repeat (LTR) circles, integrated provirus, and early viral gene products, demonstrating susceptibility to HIV-1 in vivo. Transgenic rats also displayed a low-level plasma viremia early in infection. Thus, transgenic rats expressing the appropriate human receptor complex are promising candidates for a small animal model of HIV-1 infection
Cross-Talk Between Interferon-γ and Hedgehog Signaling Regulates Adipogenesis
OBJECTIVE: T cells and level of the cytokine interferon-γ (IFN-γ) are increased in adipose tissue in obesity. Hedgehog (Hh) signaling has been shown to potently inhibit white adipocyte differentiation. In light of recent findings in neurons that IFN-γ and Hh signaling cross-talk, we examined their potential interaction in the context of adipogenesis. RESEARCH DESIGN AND METHODS: We used Hh reporter cells, cell lines, and primary adipocyte differentiation models to explore costimulation of IFN-γ and Hh signaling. Genetic dissection using Ifngr1<sup>-/-</sup> and Stat1<sup>-/-</sup> mouse embryonic fibroblasts, and ultimately, anti-IFN-γ neutralization and expression profiling in obese mice and humans, respectively, were used to place the findings into the in vivo context. RESULTS: T-cell supernatants directly inhibited hedgehog signaling in reporter and 3T3-L1 cells. Intriguingly, using blocking antibodies, Ifngr1<sup>-/-</sup> and Stat1<sup>-/-</sup> cells, and simultaneous activation of Hh and IFN-γ signaling, we showed that IFN-γ directly suppresses Hh stimulation, thus rescuing adipogenesis. We confirmed our findings using primary mouse and primary human (pre)adipocytes. Importantly, robust opposing signals for Hh and T-cell pathways in obese human adipose expression profiles and IFN-γ depletion in mice identify the system as intact in adipose tissue in vivo. CONCLUSIONS: These results identify a novel antagonistic cross-talk between IFN-γ and Hh signaling in white adipose tissue and demonstrate IFN-γ as a potent inhibitor of Hh signaling
Design and test of the optical fiber assemblies for the scalar magnetic field sensor aboard the JUICE mission
A set of optical fiber assemblies has been developed and successfully qualified for its use on a European space science mission to the icy moons of Jupiter (Jupiter Icy Moons Explorer, JUICE), to be launched in 2022. The paper gives an overview of the design challenges, the test methods used for failure detection and screening of the optical fiber cable assemblies as well as the further testing performed in the frame of a lot acceptance qualification
The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3(+) Regulatory T Cells
Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of T-reg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient T-reg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.</p
Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies
Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis
A distinct role for B1b lymphocytes in T cell-independent immunity
Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell memory, which requires the formation of germinal centers and T cells, the development of B1b cell-mediated long-lasting antibody responses occurs independent of T cell help. T cell-independent (TI) antigens are important virulence factors expressed by a number of bacterial pathogens, including those associated with biological threats. TI antigens cannot be processed and presented to T cells and therefore are known to possess restricted T cell-dependent (TD) immunogenicity. Nevertheless, specific recognition of TI antigens by B1b cells and the highly protective antibody responses mounted by them clearly indicate a crucial role for this subset of B cells. Understanding the mechanisms of long-term immunity conferred by B1b cells may lead to improved vaccine efficacy for a variety of TI antigens
- …