9 research outputs found

    Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments

    Get PDF
    This paper describes the statistical analysis of annual trends in long term datasets of greenhouse gas measurements taken over ten or more years. The analysis technique employs a bootstrap resampling method to determine both the long-term and intra-annual variability of the datasets, together with the uncertainties on the trend values. The method has been applied to data from a European network of ground-based solar FTIR instruments to determine the trends in the tropospheric, stratospheric and total columns of ozone, nitrous oxide, carbon monoxide, methane, ethane and HCFC-22. The suitability of the method has been demonstrated through statistical validation of the technique, and comparison with ground-based in-situ measurements and 3-D atmospheric models.Peer reviewe

    Advanced exploitation of ground-based Fourier transform infrared observations for tropospheric studies over Europe: achievements of the UFTIR project

    Full text link
    Solar absorption measurements using Fourier transform infrared (FTIR) spectrometry carry information about the atmospheric abundances of many constituents, including information about their vertical distributions in the troposphere and the stratosphere. Such observations have regularly been made since many years as a contribution to the NDSC (Network for the Detection of Stratospheric Change). They are the only ground-based remote sensing observations available nowadays that carry information about key atmospheric trace species in the free troposphere, among which the most important greenhouse gases. The European UFTIR project (Time series of Upper Free Troposphere observations from a European ground-based FTIR network, http://www.nilu.no/uftir) has focused on maximizing the information content of FTIR long-term monitoring data of some direct and indirect greenhouse gases (CH4, N2O, O3,HCFC-22, and CO and C2H6, respectively). The UFTIR network includes six NDSC stations in Western Europe, covering the polar to subtropical regions. At several stations of the network, the observations span more than a decade. Existing spectral time series have been reanalyzed according to a common optimized retrieval strategy, in order to derive distinct tropospheric and stratospheric abundances of the abovementioned target gases. A bootstrap resampling method has been implemented to evaluate trends of the tropospheric and total burdens of the target gases, including their uncertainties. In parallel, simulations of the target time series have been made with the Oslo CTM2 model: comparisons between the model results and the observations provide valuable information to improve the model, and in particular, to optimize emission estimates that are used as inputs to the model simulations, and to explain the observed trends. The final results of the project will be presented, and ways to proceed will be discussed

    Semi-solid Constitutive Parameters and Failure Behavior of a Cast AA7050 Alloy

    No full text
    AA7050 is an aluminum alloy with superior mechanical properties; however, it is prone to hot tearing (HT) during its production via direct-chill casting. This study focuses on extracting constitutive parameters of the alloy thermomechanical behavior in semi-solid state as well as gaining insight in its failure behavior. Tensile tests were performed using an Instron 5944 at solid fractions between 0.85 (550 °C) and 1.0 (465 °C), at deformation rates of 0.2 and 2 mm/min. The results showed that there are three mechanical behavior regimes in this solid fraction range: ductile at 1.0 (T = 465 °C) ≤ fs &lt; 0.97 (T = 473 °C), brittle at 0.97 (T = 473 °C) ≤ fs ≤ 0.9 (T = 485 °C) and then ductile again (at 0.9 (T = 485 °C) &lt; fs ≤ 0.85 (T = 550 °C)). Fracture surface analysis revealed that the fracture mode was mostly intergranular with fracture propagating through solid bridges as well. Semi-solid constitutive parameters were obtained by making a simple thermal model and numerical tensile tests in ALSIM software package and comparing the simulation results with experimental mechanical tests. The extracted constitutive parameters and available information from the literature support the fact that AA7050 is more susceptible to HT than AA5182 and Al-2 wt pct Cu alloys. The obtained parameters can further enhance the predictive capability of computer simulations of direct-chill casting.</p

    Changes in Nitrogen Dioxide and Ozone over Southeast and East Asia between Year 2000 and 2030 with Fixed Meteorology

    No full text
    In the framework of the European Network of Excellence ACCENT changes in near-surface and total tropospheric nitrogen dioxide (NO2) and ozone from year 2000 to 2030 have been calculated for the Southeast and East Asian regions using the chemical transport model Oslo CTM-2. Anthropogenic emissions of ozone precursors for the year 2000 case are taken from the International Institute for Applied Systems Analysis (IIASA). Regarding year 2030 emissions, three different scenarios are compared: 1) IIASA ¿current legislation¿ (CLE), where current air quality legislation around the world is implemented; 2) IIASA ¿maximum feasible reduction¿ (MFR), in which all currently available technologies are applied to achieve maximum emission reductions; and 3) the IPCC-SRES A2 scenario, which was used as a high emission estimate in the last IPCC assessment report. While increases in NO2 and ozone are calculated when using the CLE scenario, reductions are seen for the MFR scenario. In the SRES A2 case, increases in NO2 are largest, locally leading to ozone reductions at the surface resulting from titration effects. The model calculations suggest that air quality problems will be severely aggravated over Southeast and East Asia if current legislation is not attained.JRC.H.2-Climate chang

    Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere

    Get PDF
    Changes in atmospheric ozone have occurred since the preindustrial era as a result of increasing anthropogenic emissions. Within ACCENT, a European Network of Excellence, ozone changes between 1850 and 2000 are assessed for the troposphere and the lower stratosphere ( up to 30 km) by a variety of seven chemistry-climate models and three chemical transport models. The modeled ozone changes are taken as input for detailed calculations of radiative forcing. When only changes in chemistry are considered ( constant climate) the modeled global-mean tropospheric ozone column increase since preindustrial times ranges from 7.9 DU to 13.8 DU among the ten participating models, while the stratospheric column reduction lies between 14.1 DU and 28.6 DU in the models considering stratospheric chemistry. The resulting radiative forcing is strongly dependent on the location and altitude of the modeled ozone change and varies between 0.25 Wm(-2) and 0.45 Wm(-2) due to ozone change in the troposphere and - 0.123 Wm(-2) and + 0.066 Wm(-2) due to the stratospheric ozone change. Changes in ozone and other greenhouse gases since preindustrial times have altered climate. Six out of the ten participating models have performed an additional calculation taking into account both chemical and climate change. In most models the isolated effect of climate change is an enhancement of the tropospheric ozone column increase, while the stratospheric reduction becomes slightly less severe. In the three climate-chemistry models with detailed tropospheric and stratospheric chemistry the inclusion of climate change increases the resulting radiative forcing due to tropospheric ozone change by up to 0.10 Wm(-2), while the radiative forcing due to stratospheric ozone change is reduced by up to 0.034 Wm(-2). Considering tropospheric and stratospheric change combined, the total ozone column change is negative while the resulting net radiative forcing is positive

    The exploitation of ground-based Fourier transform infrared observations for the evaluation of tropospheric trends of greenhouse gases over Europe

    Get PDF
    Solar absorption measurements using Fourier transform infrared (FTIR) spectrometry carry information about the atmospheric abundances of many constituents, including non-CO2 greenhouse gases. Such observations have regularly been made for many years as a contribution to the Network for the Detection of Stratospheric Change (NDSC). They are the only ground-based remote sensing observations available nowadays that carry information about a number of greenhouse gases in the free troposphere. This work focuses on the discussion of the information content of FTIR long-term monitoring data of some direct and indirect greenhouse gases (CH4, N2O, O3 and CO and C2H6, respectively), at six NDSC stations in Western Europe. This European FTIR network covers the polar to subtropical regions. At several stations of the network, the observations span more than a decade. Existing spectral time series have been reanalyzed according to a common optimized retrieval strategy, in order to derive distinct tropospheric and stratospheric abundances for the above-mentioned target gases. A bootstrap resampling method has been implemented to evaluate trends of the tropospheric burdens of the target gases, including their uncertainties. In parallel, simulations of the target time series are being made with the Oslo CTM2 model: comparisons between the model results and the observations provide valuable information to improve the model and, in particular, to optimize emission estimates that are used as inputs to the model simulations. The work is being performed within the EC project UFTIR. The paper focuses on N2O for which the first trend results have been obtained
    corecore