129 research outputs found
Divine Art / Infernal Machine: Western Views of Printing Surveyed
The University of Pennsylvania Libraries A.S.W. Rosenbach Lectures in Bibliography for 2010: Monday, March 22, 2010: First Impressions Welcome: David McKnight (00:01-06:00); Introduction: Peter Stallybrass (06:00-13:02); Lecture: Elizabeth L. Eisenstein (13:02-59:57); Question and Answer: (59:57-01:12:33)Tuesday, March 23, 2010: Eighteenth-Century Attitudes Introduction: David McKnight, Libby Kislak (00:01-07:02); Lecture: Elizabeth L. Eisenstein (07:02-52:57); Question and Answer: (52:57-01:07:31)Thursday, March 25, 2010: From Steam Press to Cyberspace Welcome: David McKnight (00:01-04:32); Introduction: Roger Chartier (04:32-11:33); Lecture: Elizabeth L. Eisenstein (11:33-59:05); Question and Answer: (59:20-01:09:22) The 2010 Rosenbach Fellow, Elizabeth L. Eisenstein, is a graduate of Vassar College and Harvard University and is Professor Emerita of History at the University of Michigan. Her classic work The Printing Press as an Agent of Change: Communications and Cultural Transformations in Early Modern Europe (1979) is available in many formats and languages, and her other works include Grub Street Abroad: Aspects of the French Cosmopolitan Press from the Age of Louis XIV to the French Revolution (1992). Professor Eisenstein received the Scholarly Distinction award from the American Historical Association in 2002. An expanded version of these lectures has been published as Divine Art, Infernal Machine: The Reception of Printing in the West from First Impressions to the Sense of an Ending (University of Pennsylvania Press, 2011).To download a podcast of each lecture, choose one of the additional files below. To view the event announcement, select the Download button at upper right
Recommended from our members
Inflation and Dark Energy from spectroscopy at z > 2
The expansion of the Universe is understood to have accelerated during two
epochs: in its very first moments during a period of Inflation and much more
recently, at z < 1, when Dark Energy is hypothesized to drive cosmic
acceleration. The undiscovered mechanisms behind these two epochs represent
some of the most important open problems in fundamental physics. The large
cosmological volume at 2 < z < 5, together with the ability to efficiently
target high- galaxies with known techniques, enables large gains in the
study of Inflation and Dark Energy. A future spectroscopic survey can test the
Gaussianity of the initial conditions up to a factor of ~50 better than our
current bounds, crossing the crucial theoretical threshold of
of order unity that separates single field and
multi-field models. Simultaneously, it can measure the fraction of Dark Energy
at the percent level up to , thus serving as an unprecedented test of
the standard model and opening up a tremendous discovery space
A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
Empirical Legal Studies Before 1940: A Bibliographic Essay
The modern empirical legal studies movement has well-known antecedents in the law and society and law and economics traditions of the latter half of the 20th century. Less well known is the body of empirical research on legal phenomena from the period prior to World War II. This paper is an extensive bibliographic essay that surveys the English language empirical legal research from approximately 1940 and earlier. The essay is arranged around the themes in the research: criminal justice, civil justice (general studies of civil litigation, auto accident litigation and compensation, divorce, small claims, jurisdiction and procedure, civil juries), debt and bankruptcy, banking, appellate courts, legal needs, legal profession (including legal education), and judicial staffing and selection. Accompanying the essay is an extensive bibliography of research articles, books, and reports
A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
- âŠ