83 research outputs found

    A Laminin G-EGF-Laminin G Module in Neurexin IV Is Essential for the Apico-Lateral Localization of Contactin and Organization of Septate Junctions

    Get PDF
    Septate junctions (SJs) display a unique ultrastructural morphology with ladder-like electron densities that are conserved through evolution. Genetic and molecular analyses have identified a highly conserved core complex of SJ proteins consisting of three cell adhesion molecules Neurexin IV, Contactin, and Neuroglian, which interact with the cytoskeletal FERM domain protein Coracle. How these individual proteins interact to form the septal arrays that create the paracellular barrier is poorly understood. Here, we show that point mutations that map to specific domains of neurexin IV lead to formation of fewer septae and disorganization of SJs. Consistent with these observations, our in vivo domain deletion analyses identified the first Laminin G-EGF-Laminin G module in the extracellular region of Neurexin IV as necessary for the localization of and association with Contactin. Neurexin IV protein that is devoid of its cytoplasmic region is able to create septae, but fails to form a full complement of SJs. These data provide the first in vivo evidence that specific domains in Neurexin IV are required for protein-protein interactions and organization of SJs. Given the molecular conservation of SJ proteins across species, our studies may provide insights into how vertebrate axo-glial SJs are organized in myelinated axons

    A Cdx4-Sall4 Regulatory Module Controls the Transition from Mesoderm Formation to Embryonic Hematopoiesis

    Get PDF
    Summary Deletion of caudal/cdx genes alters hox gene expression and causes defects in posterior tissues and hematopoiesis. Yet, the defects in hox gene expression only partially explain these phenotypes. To gain deeper insight into Cdx4 function, we performed chromatin immunoprecipitation sequencing (ChIP-seq) combined with gene-expression profiling in zebrafish, and identified the transcription factor spalt-like 4 (sall4) as a Cdx4 target. ChIP-seq revealed that Sall4 bound to its own gene locus and the cdx4 locus. Expression profiling showed that Cdx4 and Sall4 coregulate genes that initiate hematopoiesis, such as hox, scl, and lmo2. Combined cdx4/sall4 gene knockdown impaired erythropoiesis, and overexpression of the Cdx4 and Sall4 target genes scl and lmo2 together rescued the erythroid program. These findings suggest that auto- and cross-regulation of Cdx4 and Sall4 establish a stable molecular circuit in the mesoderm that facilitates the activation of the blood-specific program as development proceeds

    Clinical and Genomic Risk to Guide the Use of Adjuvant Therapy for Breast Cancer

    Get PDF
    BACKGROUND The use of adjuvant chemotherapy in patients with breast cancer may be guided by clinicopathological factors and a score based on a 21-gene assay to determine the risk of recurrence. Whether the level of clinical risk of breast cancer recurrence adds prognostic information to the recurrence score is not known. METHODS We performed a prospective trial involving 9427 women with hormone-receptor–positive, human epidermal growth factor receptor 2–negative, axillary node–negative breast cancer, in whom an assay of 21 genes had been performed, and we classified the clinical risk of recurrence of breast cancer as low or high on the basis of the tumor size and histologic grade. The effect of clinical risk was evaluated by calculating hazard ratios for distant recurrence with the use of Cox proportional-hazards models. The initial endocrine therapy was tamoxifen alone in the majority of the premenopausal women who were 50 years of age or younger. RESULTS The level of clinical risk was prognostic of distant recurrence in women with an intermediate 21-gene recurrence score of 11 to 25 (on a scale of 0 to 100, with higher scores indicating a worse prognosis or a greater potential benefit from chemotherapy) who were randomly assigned to endocrine therapy (hazard ratio for the comparison of high vs. low clinical risk, 2.73; 95% confidence interval [CI], 1.93 to 3.87) or to chemotherapy plus endocrine (chemoendocrine) therapy (hazard ratio, 2.41; 95% CI, 1.66 to 3.48) and in women with a high recurrence score (a score of 26 to 100), all of whom were assigned to chemoendocrine therapy (hazard ratio, 3.17; 95% CI, 1.94 to 5.19). Among women who were 50 years of age or younger who had received endocrine therapy alone, the estimated (±SE) rate of distant recurrence at 9 years was less than 5% (≤1.8±0.9%) with a low recurrence score (a score of 0 to 10), irrespective of clinical risk, and 4.7±1.0% with an intermediate recurrence score and low clinical risk. In this age group, the estimated distant recurrence at 9 years exceeded 10% among women with a high clinical risk and an intermediate recurrence score who received endocrine therapy alone (12.3±2.4%) and among those with a high recurrence score who received chemoendocrine therapy (15.2±3.3%). CONCLUSIONS Clinical-risk stratification provided prognostic information that, when added to the 21-gene recurrence score, could be used to identify premenopausal women who could benefit from more effective therapy

    Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer

    Get PDF
    BACKGROUND The recurrence score based on the 21-gene breast cancer assay predicts chemotherapy benefit if it is high and a low risk of recurrence in the absence of chemotherapy if it is low; however, there is uncertainty about the benefit of chemotherapy for most patients, who have a midrange score. METHODS We performed a prospective trial involving 10,273 women with hormone-receptor–positive, human epidermal growth factor receptor 2 (HER2)–negative, axillary node–negative breast cancer. Of the 9719 eligible patients with follow-up information, 6711 (69%) had a midrange recurrence score of 11 to 25 and were randomly assigned to receive either chemoendocrine therapy or endocrine therapy alone. The trial was designed to show noninferiority of endocrine therapy alone for invasive disease–free survival (defined as freedom from invasive disease recurrence, second primary cancer, or death). RESULTS Endocrine therapy was noninferior to chemoendocrine therapy in the analysis of invasive disease–free survival (hazard ratio for invasive disease recurrence, second primary cancer, or death [endocrine vs. chemoendocrine therapy], 1.08; 95% confidence interval, 0.94 to 1.24; P=0.26). At 9 years, the two treatment groups had similar rates of invasive disease–free survival (83.3% in the endocrine-therapy group and 84.3% in the chemoendocrine-therapy group), freedom from disease recurrence at a distant site (94.5% and 95.0%) or at a distant or local–regional site (92.2% and 92.9%), and overall survival (93.9% and 93.8%). The chemotherapy benefit for invasive disease–free survival varied with the combination of recurrence score and age (P=0.004), with some benefit of chemotherapy found in women 50 years of age or younger with a recurrence score of 16 to 25. CONCLUSIONS Adjuvant endocrine therapy and chemoendocrine therapy had similar efficacy in women with hormone-receptor–positive, HER2-negative, axillary node–negative breast cancer who had a midrange 21-gene recurrence score, although some benefit of chemotherapy was found in some women 50 years of age or younger

    Identification of Functional Networks of Estrogen- and c-Myc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer

    Get PDF
    BACKGROUND: Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. METHODOLOGY/PRINCIPAL FINDINGS: With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The 'cell cycle', 'cell growth' and 'cell death' gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth signatures. CONCLUSIONS/SIGNIFICANCE: These functionally-based gene signatures can stratify patients treated with tamoxifen into groups with differing outcome, and potentially identify distinct mechanisms of tamoxifen resistance

    Complex speech-language therapy interventions for stroke-related aphasia: the RELEASE study incorporating a systematic review and individual participant data network meta-analysis

    Get PDF
    Background: People with language problems following stroke (aphasia) benefit from speech and language therapy. Optimising speech and language therapy for aphasia recovery is a research priority. Objectives: The objectives were to explore patterns and predictors of language and communication recovery, optimum speech and language therapy intervention provision, and whether or not effectiveness varies by participant subgroup or language domain. Design: This research comprised a systematic review, a meta-analysis and a network meta-analysis of individual participant data. Setting: Participant data were collected in research and clinical settings. Interventions: The intervention under investigation was speech and language therapy for aphasia after stroke. Main outcome measures: The main outcome measures were absolute changes in language scores from baseline on overall language ability, auditory comprehension, spoken language, reading comprehension, writing and functional communication. Data sources and participants: Electronic databases were systematically searched, including MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature, Linguistic and Language Behavior Abstracts and SpeechBITE (searched from inception to 2015). The results were screened for eligibility, and published and unpublished data sets (randomised controlled trials, non-randomised controlled trials, cohort studies, case series, registries) with at least 10 individual participant data reporting aphasia duration and severity were identified. Existing collaborators and primary researchers named in identified records were invited to contribute electronic data sets. Individual participant data in the public domain were extracted. Review methods: Data on demographics, speech and language therapy interventions, outcomes and quality criteria were independently extracted by two reviewers, or available as individual participant data data sets. Meta-analysis and network meta-analysis were used to generate hypotheses. Results: We retrieved 5928 individual participant data from 174 data sets across 28 countries, comprising 75 electronic (3940 individual participant data), 47 randomised controlled trial (1778 individual participant data) and 91 speech and language therapy intervention (2746 individual participant data) data sets. The median participant age was 63 years (interquartile range 53-72 years). We identified 53 unavailable, but potentially eligible, randomised controlled trials (46 of these appeared to include speech and language therapy). Relevant individual participant data were filtered into each analysis. Statistically significant predictors of recovery included age (functional communication, individual participant data: 532, n = 14 randomised controlled trials) and sex (overall language ability, individual participant data: 482, n = 11 randomised controlled trials; functional communication, individual participant data: 532, n = 14 randomised controlled trials). Older age and being a longer time since aphasia onset predicted poorer recovery. A negative relationship between baseline severity score and change from baseline (p < 0.0001) may reflect the reduced improvement possible from high baseline scores. The frequency, duration, intensity and dosage of speech and language therapy were variously associated with auditory comprehension, naming and functional communication recovery. There were insufficient data to examine spontaneous recovery. The greatest overall gains in language ability [14.95 points (95% confidence interval 8.7 to 21.2 points) on the Western Aphasia Battery-Aphasia Quotient] and functional communication [0.78 points (95% confidence interval 0.48 to 1.1 points) on the Aachen Aphasia Test-Spontaneous Communication] were associated with receiving speech and language therapy 4 to 5 days weekly; for auditory comprehension [5.86 points (95% confidence interval 1.6 to 10.0 points) on the Aachen Aphasia Test-Token Test], the greatest gains were associated with receiving speech and language therapy 3 to 4 days weekly. The greatest overall gains in language ability [15.9 points (95% confidence interval 8.0 to 23.6 points) on the Western Aphasia Battery-Aphasia Quotient] and functional communication [0.77 points (95% confidence interval 0.36 to 1.2 points) on the Aachen Aphasia Test-Spontaneous Communication] were associated with speech and language therapy participation from 2 to 4 (and more than 9) hours weekly, whereas the highest auditory comprehension gains [7.3 points (95% confidence interval 4.1 to 10.5 points) on the Aachen Aphasia Test-Token Test] were associated with speech and language therapy participation in excess of 9 hours weekly (with similar gains notes for 4 hours weekly). While clinically similar gains were made alongside different speech and language therapy intensities, the greatest overall gains in language ability [18.37 points (95% confidence interval 10.58 to 26.16 points) on the Western Aphasia Battery-Aphasia Quotient] and auditory comprehension [5.23 points (95% confidence interval 1.51 to 8.95 points) on the Aachen Aphasia Test-Token Test] were associated with 20-50 hours of speech and language therapy. Network meta-analyses on naming and the duration of speech and language therapy interventions across language outcomes were unstable. Relative variance was acceptable (< 30%). Subgroups may benefit from specific interventions. Limitations: Data sets were graded as being at a low risk of bias but were predominantly based on highly selected research participants, assessments and interventions, thereby limiting generalisability. Conclusions: Frequency, intensity and dosage were associated with language gains from baseline, but varied by domain and subgroup

    Communicating simply, but not too simply: Reporting of participants and speech and language interventions for aphasia after stroke

    Get PDF
    Purpose: Speech and language pathology (SLP) for aphasia is a complex intervention delivered to a heterogeneous population within diverse settings. Simplistic descriptions of participants and interventions in research hinder replication, interpretation of results, guideline and research developments through secondary data analyses. This study aimed to describe the availability of participant and intervention descriptors in existing aphasia research datasets. Method: We systematically identified aphasia research datasets containing ≥10 participants with information on time since stroke and language ability. We extracted participant and SLP intervention descriptions and considered the availability of data compared to historical and current reporting standards. We developed an extension to the Template for Intervention Description and Replication checklist to support meaningful classification and synthesis of the SLP interventions to support secondary data analysis. Result: Of 11, 314 identified records we screened 1131 full texts and received 75 dataset contributions. We extracted data from 99 additional public domain datasets. Participant age (97.1%) and sex (90.8%) were commonly available. Prior stroke (25.8%), living context (12.1%) and socio-economic status (2.3%) were rarely available. Therapy impairment target, frequency and duration were most commonly available but predominately described at group level. Home practice (46.3%) and tailoring (functional relevance 46.3%) were inconsistently available. Conclusion : Gaps in the availability of participant and intervention details were significant, hampering clinical implementation of evidence into practice and development of our field of research. Improvements in the quality and consistency of participant and intervention data reported in aphasia research are required to maximise clinical implementation, replication in research and the generation of insights from secondary data analysis. Systematic review registration: PROSPERO CRD4201811094
    corecore