196 research outputs found

    Self-reported evaluation of competencies and attitudes by physicians-in-training before and after a single day legislative advocacy experience

    Get PDF
    BACKGROUND: Advocacy is increasingly being recognized as a core element of medical professionalism and efforts are underway to incorporate advocacy training into graduate and undergraduate medical school curricula. While limited data exist to quantify physician attitudes toward advocacy, even less has been done to assess the knowledge, skills, and attitudes of future physicians. The purpose of this study was to assess students’ experiences and attitudes toward legislative advocacy, cutting out using a convience sample. METHODS: A paper survey based on previously validated surveys was administered to a convenience sample of premedical and medical student participants attending a National Advocacy Day in Washington, DC, in March 2011, both before and after their advocacy experiences. Responses were anonymous and either categorical ( or ordinal, using a 5-point Likert scale. Data were analyzed statistically to evaluate demographics and compare changes in pre- and post-experience attitude and skills. RESULTS: Data from 108 pre-advocacy and 50 post-advocacy surveys were analyzed yielding a response rate of 46.3%. Following a single advocacy experience, subjects felt they were more likely to contact their legislators about healthcare issues (p = 0.03), to meet in person with their legislators (p < 0.01), and to advocate for populations' health needs (p = 0.04). Participants endorsed an increased perception of the role of a physician advocate extending beyond individual patients (p = 0.03). Participants disagreed with the statement that their formal curricula adequately covered legislative healthcare advocacy. Additionally, respondents indicated that they plan to engage in legislative advocacy activities in the future (p < 0.01). CONCLUSIONS: A one-time practical advocacy experience has a positive influence on students’ knowledge, skills and attitudes towards legislative advocacy. Practical experience is an important method of furthering medical education in advocacy and further research is necessary to assess its impact in a broader population

    COX-2 and PPARγ expression are potential markers of recurrence risk in mammary duct carcinoma in-situ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In women with duct carcinoma in-situ (DCIS) receiving breast conservation therapy (BCT), in-breast recurrences are seen in approximately 10%, but cannot be accurately predicted using clinical and histological criteria. We performed a case-control study to identify protein markers of local recurrence risk in DCIS.</p> <p>Methods</p> <p>Women treated for DCIS with BCT, who later developed in-breast recurrence (cases) were matched by age and year of treatment to women who remained free of recurrence (controls).</p> <p>Results</p> <p>A total of 69 women were included in the study, 31 cases and 38 controls. Immunohistochemical evaluation of DCIS tissue arrays was performed for estrogen receptor, progesterone receptor, HER-2/neu, cyclin D1, p53, p21, cycloxygenase-2 (COX-2) and peroxisome proliferator activated receptor γ (PPARγ). Two markers were significantly different between cases and controls on univariate analysis: strong COX-2 expression was associated with increased risk of recurrence, with 67% vs. 24% positivity in cases and controls p = 0.006; and nuclear expression of PPARγ was associated with protection from recurrence with 4% vs. 27% positivity in cases and controls, p = 0.024. In a multivariate model which included size, grade, COX-2 and PPARγ positivity, we found COX-2 positivity to be a strong independent risk factor for recurrence (OR 7.90, 95% CI 1.72–36.23)., whereas size and grade were of borderline significance. PPARγ expression continued to demonstrate a protective trend, (OR 0.14, 95% CI 0.06–1.84).</p> <p>Conclusion</p> <p>Our findings suggest that COX-2 and PPARγ should be investigated further as biologic markers to predict DCIS recurrence, particularly since they are also potential therapeutic targets.</p

    Healthcare Reform and the Next Generation: United States Medical Student Attitudes toward the Patient Protection and Affordable Care Act

    Get PDF
    CONTEXT: Over one year after passage of the Patient Protection and Affordable Care Act (PPACA), legislators, healthcare experts, physicians, and the general public continue to debate the implications of the law and its repeal. The PPACA will have a significant impact on future physicians, yet medical student perspectives on the legislation have not been well documented. OBJECTIVE: To evaluate medical students' understanding of and attitudes toward healthcare reform and the PPACA including issues of quality, access and cost. DESIGN, SETTING, AND PARTICIPANTS: An anonymous electronic survey was sent to medical students at 10 medical schools (total of 6982 students) between October-December 2010, with 1232 students responding and a response rate of 18%. MAIN OUTCOME MEASURES: Medical students' views and attitudes regarding the PPACA and related topics, measured with Likert scale and open response items. RESULTS: Of medical students surveyed, 94.8% agreed that the existing United States healthcare system needs to be reformed, 31.4% believed the PPACA will improve healthcare quality, while 20.9% disagreed and almost half (47.7%) were unsure if quality will be improved. Two thirds (67.6%) believed that the PPACA will increase access, 6.5% disagreed and the remaining 25.9% were unsure. With regard to containing healthcare costs, 45.4% of participants indicated that they are unsure if the provisions of the PPACA will do so. Overall, 80.1% of respondents indicated that they support the PPACA, and 78.3% also indicated that they did not feel that reform efforts had gone far enough. A majority of respondents (58.8%) opposed repeal of the PPACA, while 15.0% supported repeal, and 26.1% were undecided. CONCLUSION: The overwhelming majority of medical students recognized healthcare reform is needed and expressed support for the PPACA but echoed concerns about whether it will address issues of quality or cost containment

    A randomized trial provided new evidence on the accuracy and efficiency of traditional vs. electronically annotated abstraction approaches in systematic reviews

    Get PDF
    Abstract Objectives Data Abstraction Assistant (DAA) is a software for linking items abstracted into a data collection form for a systematic review to their locations in a study report. We conducted a randomized cross-over trial that compared DAA-facilitated single-data abstraction plus verification ("DAA verification"), single data abstraction plus verification ("regular verification"), and independent dual data abstraction plus adjudication ("independent abstraction"). Study Design and Setting This study is an online randomized cross-over trial with 26 pairs of data abstractors. Each pair abstracted data from six articles, two per approach. Outcomes were the proportion of errors and time taken. Results Overall proportion of errors was 17% for DAA verification, 16% for regular verification, and 15% for independent abstraction. DAA verification was associated with higher odds of errors when compared with regular verification (adjusted odds ratio [OR] = 1.08; 95% confidence interval [CI]: 0.99–1.17) or independent abstraction (adjusted OR = 1.12; 95% CI: 1.03–1.22). For each article, DAA verification took 20 minutes (95% CI: 1–40) longer than regular verification, but 46 minutes (95% CI: 26 to 66) shorter than independent abstraction. Conclusion Independent abstraction may only be necessary for complex data items. DAA provides an audit trail that is crucial for reproducible research

    Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis

    Get PDF
    Background: Impaired signaling in the IFN-g/IL-12 pathway causes susceptibility to severe disseminated infections with mycobacteria and dimorphic yeasts. Dominant gain-of-function mutations in signal transducer and activator of transcription 1 (STAT1) have been associated with chronic mucocutaneous candidiasis. Objective: We sought to identify the molecular defect in patients with disseminated dimorphic yeast infections. Methods: PBMCs, EBV-transformed B cells, and transfected U3A cell lines were studied for IFN-g/IL-12 pathway function. STAT1 was sequenced in probands and available relatives. Interferon-induced STAT1 phosphorylation, transcriptional responses, protein-protein interactions, target gene activation, and function were investigated. Results: We identified 5 patients with disseminated Coccidioides immitis or Histoplasma capsulatum with heterozygous missense mutations in the STAT1 coiled-coil or DNA-binding domains. These are dominant gain-of-function mutations causing enhanced STAT1 phosphorylation, delayed dephosphorylation, enhanced DNA binding and transactivation, and enhanced interaction with protein inhibitor of activated STAT1. The mutations caused enhanced IFN-g–induced gene expression, but we found impaired responses to IFN-g restimulation. Conclusion: Gain-of-function mutations in STAT1 predispose to invasive, severe, disseminated dimorphic yeast infections, likely through aberrant regulation of IFN-g–mediated inflammationFil: Sampaio, Elizabeth P.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Instituto Oswaldo Cruz. Laboratorio de Leprologia; BrasilFil: Hsu, Amy P.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Pechacek, Joseph. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Hannelore I.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Erasmus Medical Center. Department of Medical Microbiology and Infectious Disease; Países BajosFil: Dias, Dalton L.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Paulson, Michelle L.. Clinical Research Directorate/CMRP; Estados UnidosFil: Chandrasekaran, Prabha. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Rosen, Lindsey B.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Carvalho, Daniel S.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unidos. Instituto Oswaldo Cruz, Laboratorio de Leprologia; BrasilFil: Ding, Li. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Vinh, Donald C.. McGill University Health Centre. Division of Infectious Diseases; CanadáFil: Browne, Sarah K.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Datta, Shrimati. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Allergic Diseases. Allergic Inflammation Unit; Estados UnidosFil: Milner, Joshua D.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Allergic Diseases. Allergic Inflammation Unit; Estados UnidosFil: Kuhns, Douglas B.. Clinical Services Program; Estados UnidosFil: Long Priel, Debra A.. Clinical Services Program; Estados UnidosFil: Sadat, Mohammed A.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Host Defenses. Infectious Diseases Susceptibility Unit; Estados UnidosFil: Shiloh, Michael. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: De Marco, Brendan. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Alvares, Michael. University of Texas. Southwestern Medical Center. Division of Allergy and Immunology; Estados UnidosFil: Gillman, Jason W.. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Ramarathnam, Vivek. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: de la Morena, Maite. University of Texas. Southwestern Medical Center. Division of Allergy and Immunology; Estados UnidosFil: Bezrodnik, Liliana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutierrez"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Moreira, Ileana. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutierrez"; ArgentinaFil: Uzel, Gulbu. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Johnson, Daniel. University of Chicago. Comer Children; Estados UnidosFil: Spalding, Christine. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Zerbe, Christa S.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados UnidosFil: Wiley, Henry. National Eye Institute. Clinical Trials Branch; Estados UnidosFil: Greenberg, David E.. University of Texas. Southwestern Medical Center. Division of Infectious Diseases; Estados UnidosFil: Hoover, Susan E.. University of Arizona. College of Medicine. Valley Fever Center for Excellence; Estados UnidosFil: Rosenzweig, Sergio D.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Host Defenses Infectious Diseases Susceptibility Unit; Estados Unidos. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Primary Immunodeficiency Clinic; Estados UnidosFil: Galgiani, John N.. University of Arizona. College of Medicine. Valley Fever Center for Excellence; Estados UnidosFil: Holland, Steven M.. National Institutes of Health. National Institute of Allergy and Infectious Diseases. Laboratory of Clinical Infectious Diseases. Immunopathogenesis Section; Estados Unido

    Sorghum Genome Sequencing by Methylation Filtration

    Get PDF
    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis

    Nipple aspiration and ductal lavage in women with a germline BRCA1 or BRCA2 mutation

    Get PDF
    INTRODUCTION: The aim of this study was to collect serial samples of nipple aspirate (NA) and ductal lavage (DL) fluid from women with germline BRCA1/2 mutations in order to create a biorepository for use in identifying biomarkers of breast cancer risk. METHODS: Between March 2003 and February 2005, 52 women with germline BRCA1 or BRCA2 mutations (median age 43 years, range 27 to 65 years) were scheduled for six-monthly NA, DL and venesection. DL was attempted for all NA fluid-yielding (FY) and any non-FY ducts that could be located at each visit. RESULTS: Twenty-seven (52%) women were postmenopausal, predominantly (19/27) from risk reducing bilateral salpingo-oophorectomy (BSO). FY ducts were identified in 60% of all women, 76% of premenopausal women versus 44% of postmenopausal (P = 0.026). Eighty-five percent of women had successful DL. Success was most likely in women with FY ducts (FY 94% versus non-FY 71% (P = 0.049). DL samples were more likely to be cellular if collected from FY ducts (FY 68% versus non-FY 43%; P = 0.037). Total cell counts were associated with FY status (FY median cell count 30,996, range 0 to >1,000,000 versus non-FY median cell count 0, range 0 to 173,577; P = 0.002). Four women (8%) had ducts with severe atypia with or without additional ducts with mild epithelial atypia; seven others had ducts with mild atypia alone (11/52 (21%) in total). Median total cell count was greater from ducts with atypia (105,870, range 1920 to >1,000,000) than those with no atypia (174, 0 to >1,000,000; P ≤ 0.001). CONCLUSION: It is feasible to collect serial NA and DL samples from women at high genetic risk of breast cancer, and we are creating a unique, prospective collection of ductal samples that have the potential to be used for discovery of biomarkers of breast cancer risk and evaluate the ongoing effects of risk reducing BSO. DL cellular atypia was not predictive of a current breast cancer and longer follow up is needed to determine whether atypia is an additional marker of future breast cancer risk in this population already at high genetic risk of breast cancer
    corecore