130 research outputs found
Neural Impact of Neighborhood Socioeconomic Disadvantage in Traumatically Injured Adults
Nearly 14 percent of Americans live in a socioeconomically disadvantaged neighborhood. Lower individual socioeconomic position (iSEP) has been linked to increased exposure to trauma and stress, as well as to alterations in brain structure and function; however, the neural effects of neighborhood SEP (nSEP) factors, such as neighborhood disadvantage, are unclear. Using a multi-modal approach with participants who recently experienced a traumatic injury (N = 185), we investigated the impact of neighborhood disadvantage, acute post-traumatic stress symptoms, and iSEP on brain structure and functional connectivity at rest. After controlling for iSEP, demographic variables, and acute PTSD symptoms, nSEP was associated with decreased volume and alterations of resting-state functional connectivity in structures implicated in affective processing, including the insula, ventromedial prefrontal cortex, amygdala, and hippocampus. Even in individuals who have recently experienced a traumatic injury, and after accounting for iSEP, the impact of living in a disadvantaged neighborhood is apparent, particularly in brain regions critical for experiencing and regulating emotion. These results should inform future research investigating how various levels of socioeconomic circumstances may impact recovery after a traumatic injury as well as policies and community-developed interventions aimed at reducing the impact of socioeconomic stressors
Impact of Experience Corps® Participation on Children’s Academic Achievement and School Behavior
This article reports on the impact of the Experience Corps® (EC) Baltimore program, an intergenerational, school-based program aimed at improving academic achievement and reducing disruptive school behavior in urban, elementary school students in Kindergarten through third grade (K-3). Teams of adult volunteers aged 60 and older were placed in public schools, serving 15 h or more per week, to perform meaningful and important roles to improve the educational outcomes of children and the health and well-being of volunteers. Findings indicate no significant impact of the EC program on standardized reading or mathematical achievement test scores among children in grades 1–3 exposed to the program. K-1st grade students in EC schools had fewer principal office referrals compared to K-1st grade students in matched control schools during their second year in the EC program; second graders in EC schools had fewer suspensions and expulsions than second graders in non-EC schools during their first year in the EC program. In general, both boys and girls appeared to benefit from the EC program in school behavior. The results suggest that a volunteer engagement program for older adults can be modestly effective for improving selective aspects of classroom behavior among elementary school students in under-resourced, urban schools, but there were no significant improvements in academic achievement. More work is needed to identify individual- and school-level factors that may help account for these results
Association of genetic variants in the promoter region of genes encoding p22phox (CYBA) and glutamate cysteine ligase catalytic subunit (GCLC) and renal disease in patients with type 1 diabetes mellitus
<p>Abstract</p> <p>Background</p> <p>Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the <it>CYBA </it>gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O<sub>2</sub><sup>•- </sup>(-675 T → A in <it>CYBA</it>, unregistered) and in glutathione metabolism (-129 C → T in <it>GCLC </it>[rs17883901] and -65 T → C in <it>GPX3 </it>[rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients.</p> <p>Methods</p> <p>401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m<sup>2 </sup>(n = 136) and were genotyped.</p> <p>Results</p> <p>No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying <it>CYBA </it>genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying <it>GCLC </it>genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (<it>p </it>= 0.0082). Logistic regression analysis identified the presence of at least one A allele of the <it>CYBA </it>SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, <it>p </it>= 0.0354) and the presence of at least one T allele of the <it>GCLC </it>rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, <it>p </it>= 0.0068).</p> <p>Conclusions</p> <p>The functional SNPs <it>CYBA </it>-675 T → A and <it>GCLC </it>rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.</p
DisProt: intrinsic protein disorder annotation in 2020
The Database of Protein Disorder (DisProt, URL: https://disprot.org) provides manually curated annotations of intrinsically disordered proteins from the literature. Here we report recent developments with DisProt (version 8), including the doubling of protein entries, a new disorder ontology, improvements of the annotation format and a completely new website. The website includes a redesigned graphical interface, a better search engine, a clearer API for programmatic access and a new annotation interface that integrates text mining technologies. The new entry format provides a greater flexibility, simplifies maintenance and allows the capture of more information from the literature. The new disorder ontology has been formalized and made interoperable by adopting the OWL format, as well as its structure and term definitions have been improved. The new annotation interface has made the curation process faster and more effective. We recently showed that new DisProt annotations can be effectively used to train and validate disorder predictors. We believe the growth of DisProt will accelerate, contributing to the improvement of function and disorder predictors and therefore to illuminate the ‘dark’ proteome
FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration
Through an international consortium, we have collected 37 tau- and TAR DNA-binding protein 43 (TDP-43)-negative frontotemporal lobar degeneration (FTLD) cases, and present here the first comprehensive analysis of these cases in terms of neuropathology, genetics, demographics and clinical data. 92% (34/37) had fused in sarcoma (FUS) protein pathology, indicating that FTLD-FUS is an important FTLD subtype. This FTLD-FUS collection specifically focussed on aFTLD-U cases, one of three recently defined subtypes of FTLD-FUS. The aFTLD-U subtype of FTLD-FUS is characterised clinically by behavioural variant frontotemporal dementia (bvFTD) and has a particularly young age of onset with a mean of 41 years. Further, this subtype had a high prevalence of psychotic symptoms (36% of cases) and low prevalence of motor symptoms (3% of cases). We did not find FUS mutations in any aFTLD-U case. To date, the only subtype of cases reported to have ubiquitin-positive but tau-, TDP-43- and FUS-negative pathology, termed FTLD-UPS, is the result of charged multivesicular body protein 2B gene (CHMP2B) mutation. We identified three FTLD-UPS cases, which are negative for CHMP2B mutation, suggesting that the full complement of FTLD pathologies is yet to be elucidated
High Viral Fitness during Acute HIV-1 Infection
Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection
Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n≥3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis
Recommended from our members
Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis
Pancreatitis is a complex, progressively destructive inflammatory disorder. Alcohol was long thought to be the primary causative agent, but genetic contributions have been of interest since the discovery that rare PRSS1, CFTR, and SPINK1 variants were associated with pancreatitis risk. We now report two significant genome-wide associations identified and replicated at PRSS1-PRSS2 (1×10-12) and x-linked CLDN2 (p < 1×10-21) through a two-stage genome-wide study (Stage 1, 676 cases and 4507 controls; Stage 2, 910 cases and 4170 controls). The PRSS1 variant affects susceptibility by altering expression of the primary trypsinogen gene. The CLDN2 risk allele is associated with atypical localization of claudin-2 in pancreatic acinar cells. The homozygous (or hemizygous male) CLDN2 genotype confers the greatest risk, and its alleles interact with alcohol consumption to amplify risk. These results could partially explain the high frequency of alcohol-related pancreatitis in men – male hemizygous frequency is 0.26, female homozygote is 0.07
- …