26 research outputs found
Analysis of Catania Flash Flood Case Study by Using Combined Microwave and Infrared Technique
Abstract
In this paper, the analysis of an extreme convective event atypical for the winter season, which occurred on 21 February 2013 on the east coast of Sicily and caused a flash flood over Catania, is presented. In just 1 h, more than 50 mm of precipitation was recorded, but it was not forecast by numerical weather prediction (NWP) models and, consequently, no severe weather warnings were sent to the population. The case study proposed is first examined with respect to the synoptic situation and then analyzed by means of two algorithms based on satellite observations: the Cloud Mask Coupling of Statistical and Physical Methods (MACSP) and the Precipitation Evolving Technique (PET), developed at the National Research Council of Italy. Both of the algorithms show their ability in the near-real-time monitoring of convective cell formation and their rapid evolution. As quantitative precipitation forecasts by NWP could fail, especially for atypical convective events like in Catania, tools like MACSP and PET shall be adopted by civil protection centers to monitor the real-time evolution of deep convection events in aid to the severe weather warning service
Combined IASI-NG and MWS observations for the retrieval of cloud liquid and ice water path: a deep learning artificial intelligence approach
A neural network (NN) approach is proposed to combine future infrared (IASI-NG) and microwave (MWS) observations to retrieve cloud liquid and ice water path. The methodology is applied to simulated IASI-NG and MWS observations in the period January–October 2019. IASI-NG and MWS observations are simulated globally at synoptic hours (00:00, 06:00, 12:00, 18:00 UTC) and on a regular spatial grid (0.125° × 0.125°) from ECMWF 5-generation reanalysis (ERA5). The state-of-the-art σ-IASI and RTTOV radiative transfer codes are used to simulate IASI-NG and MWS observations, respectively, from the earth's state vector given by ERA5. A principal component analysis of the simulated IASI-NG observations is performed. Accordingly, a NN is developed to retrieve cloud liquid and ice water path from a combination of 24 MWS channels and 30 IASI-NG PCs. Validation indicates that this combination results in liquid and ice water path retrievals with overall accuracy of 1.85 10 −2 kg/m 2 and 1.18 10 −2 kg/m 2 , respectively, and 0.97 correlation with respect to reference values. The root-mean-square error (RMSE) for CLWP results in about 30% of the mean value (5.91 10 −2 kg/m 2 ) and 22% of the variability (1-sigma). Similarly, the RMSE for CIWP results in about 41% of the mean value (2.91 10 −2 kg/m 2 ) and 22% of the variability. Two more NN are developed, retrieving cloud liquid and ice water path from microwave observations only (24 MWS channels) and infrared observations only (30 IASI-NG PCs), demonstrating quantitatively the advantage of using the combination of infrared and microwave observations with respect to either one alone
On estimating key cloud properties with satellite observations: An artificial intelligence based retrieval framework
This work builds on the analyses made within the EUMETSAT ComboCloud project (contract EUM/CO/19/4600002352/THH) whose purpose was to develop AI-based solutions to infer key cloud parameters exploiting the combination of innovative features offered by upcoming satellite sensors, namely the Next Generation Atmospheric Sounding Interferometer (IASI-NG), and the Microwave Sounder (MWS). We present the potential of the developed solutions applied to real observations, from the instruments flying onboard the EUMETSAT MetOp satellites such as the Atmospheric Sounding Interferometer (IASI), the Advanced Microwave Sounding Unit (AMSU), and the Microwave Humidity Sounder (MHS) and validated against cloud products from an independent dataset of real observations. The validation demonstrated good agreement between reference and retrieved cloud key parameters, showing consistent range and spatial patterns
Fog Detection Based on Meteosat Second Generation-Spinning Enhanced Visible and InfraRed Imager High Resolution Visible Channel
In this study, the Meteosat Second Generation (MSG)-Spinning Enhanced Visible and Infrared Imager (SEVIRI) High Resolution Visible channel (HRV) is used in synergy with the narrow band MSG-SEVIRI channels for daytime fog detection. A new algorithm, named MSG-SEVIRI SatFog, has been designed and implemented. MSG-SEVIRI SatFog provides the indication of the presence of fog in near real time and at the high spatial resolution of the HRV channel. The HRV resolution is useful for detecting small scale daytime fog that would be missed in the MSG-SEVIRI low spatial resolution channels. By combining textural, physical and tonal tests, a distinction between fog and low stratus is performed for pixels identified as low/middle clouds or clear by the Classification-MAsk Coupling of Statistical and Physical Methods (C-MACSP) cloud detection algorithm. Suitable thresholds have been determined using a specific dataset covering different geographical areas, seasons and time of the day. MSG-SEVIRI SatFog is evaluated against METeorological Aerodrome Reports (METAR) data observations. Evaluation results in an accuracy of 69.9%, a probability of detection of 68.7%, a false alarm ratio of 31.3% and a probability of false detection of 30.0%
A high-resolution, integrated system for rice yield forecasting at district level
To meet the growing demands from public and private stakeholders for early yield estimates, a high-resolution (2 km × 2 km) rice yield forecasting system based on the integration of the WARM model and remote sensing (RS) technologies was developed. RS was used to identify rice-cropped area and to derive spatially distributed sowing dates, and for the dynamic assimilation of RS-derived leaf area index (LAI) data within the crop model. The system—tested for the main European rice production districts in Italy, Greece, and Spain—performed satisfactorily; >66% of the inter-annual yield variability was explained in six out of eight combinations of ecotype × district, with a maximum of 89% of the variability explained for the ‘Tropical Japonica’ cultivars in the Vercelli district (Italy). In seven out of eight cases, the assimilation of RS-derived LAI improved the forecasting capability, with minor differences due to the assimilation technology used (updating or recalibration). In particular, RS data reduced uncertainty by capturing factors that were not properly reproduced by the simulation model (given the uncertainty due to large-area simulations). The system, which is an extension of the one used for rice within the EC-JRC-MARS forecasting system, was used pre-operationally in 2015 and 2016 to provide early yield estimates to private companies and institutional stakeholders within the EU-FP7 ERMES project
Downstream Services for Rice Crop Monitoring in Europe: From Regional to Local Scale
The ERMES agromonitoring system for rice cultivations integrates EO data at different resolutions, crop models, and user-provided in situ data in a unified system, which drives two operational downstream services for rice monitoring. The first is aimed at providing information concerning the behavior of the current season at regional/rice district scale, while the second is dedicated to provide farmers with field-scale data useful to support more efficient and environmentally friendly crop practices. In this contribution, we describe the main characteristics of the system, in terms of overall architecture, technological solutions adopted, characteristics of the developed products, and functionalities provided to end users. Peculiarities of the system reside in its ability to cope with the needs of different stakeholders within a common platform, and in a tight integration between EO data processing and information retrieval, crop modeling, in situ data collection, and information dissemination. The ERMES system has been operationally tested in three European rice-producing countries (Italy, Spain, and Greece) during growing seasons 2015 and 2016, providing a great amount of near-real-time information concerning rice crops. Highlights of significant results are provided, with particular focus on real-world applications of ERMES products and services. Although developed with focus on European rice cultivations, solutions implemented in the ERMES system can be, and are already being, adapted to other crops and/or areas of the world, thus making it a valuable testing bed for the development of advanced, integrated agricultural monitoring systems
The Role of Emissivity in the Detection of Arctic Night Clouds
Detection of clouds over polar areas from satellite radiometric measurements in the visible and IR atmospheric window region is rather difficult because of the high albedo of snow, possible ice covered surfaces, very low humidity, and the usual presence of atmospheric temperature inversion. Cold and highly reflective polar surfaces provide little thermal and visible contrast between clouds and the background surface. Moreover, due to the presence of temperature inversion, clouds are not always identifiable as being colder than the background. In addition, low humidity often causes polar clouds to be optically thin. Finally, polar clouds are usually composed of a mixture of ice and water, which leads to an unclear spectral signature. Single and bi-spectral threshold methods are sometimes inappropriate due to a large variability of surface emissivity and cloud conditions. The objective of this study is to demonstrate the crucial role played by surface emissivity in the detection of polar winter clouds and the potential improvement offered by infrared hyperspectral observations, such as from the Infrared Atmospheric Sounding Interferometer (IASI). In this paper a new approach for cloud detection is proposed and validated exploiting active measurements from satellite sensors, i.e., the CloudSat cloud profiling radar (CPR) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). For a homogenous IASI field of view (FOVs), the proposed cloud detection scheme tallies with the combined CPR and CALIOP product in classifying 98.11% of the FOVs as cloudy and also classifies 97.54% of the FOVs as clear. The Hansen Kuipers discriminant reaches 0.95
A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1
This work presents an algorithm based on a neural network (NN) for cloud detection to detect clouds and their thermodynamic phase using spectral observations from spaceborne microwave radiometers. A standalone cloud detection algorithm over the ocean and land has been developed to distinguish clear sky versus ice and liquid clouds from microwave sounder (MWS) observations. The MWS instrument—scheduled to be onboard the first satellite of the Eumetsat Polar System Second-Generation (EPS-SG) series, MetOp-SG A1—has a direct inheritance from advanced microwave sounding unit A (AMSU-A) and the microwave humidity sounder (MHS) microwave instruments. Real observations from the MWS sensor are not currently available as its launch is foreseen in 2024. Thus, a simulated dataset of atmospheric states and associated MWS synthetic observations have been produced through radiative transfer calculations with ERA5 real atmospheric profiles and surface conditions. The developed algorithm has been validated using spectral observations from the AMSU-A and MHS sounders. While ERA5 atmospheric profiles serve as references for the model development and its validation, observations from AVHRR cloud mask products provide references for the AMSU-A/MHS model evaluation. The results clearly show the NN algorithm’s high skills to detect clear, ice and liquid cloud conditions against a benchmark. In terms of overall accuracy, the NN model features 92% (88%) on the ocean and 87% (85%) on land, for the MWS (AMSU-A/MHS)-simulated dataset, respectively
Evaluation and Global-Scale Observation of Nitrous Oxide from IASI on Metop-A
International audienceThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC B