18 research outputs found

    Identification of inoculum sources of Fusicladium eriobotryae in loquat orchards in Spain

    Full text link
    [EN] Fusicladium eriobotryae is the causal agent of loquat scab, the main disease damaging fruit, leaves and young twigs of this crop. A two-growing season study (2015¿2016 and 2016¿2017) was carried out in two loquat orchards (cv ¿Algerie¿) to determine the inoculum sources of F. eriobotryae by direct observation of conidia, pathogen isolation on culture media and detection using a new real time PCR protocol developed in this study. One-year-old twigs, fruit peduncles and fruit mummies were randomly sampled three times per growing season on each orchard, and inflorescences only at flowering. Conidia of F. eriobotryae were not found and the isolation of the pathogen was neither possible from any sample in both seasons. Specific primers FUG2F and FUG2R, were designed to detect and quantify DNA of F. eriobotryae on plant material, with a limit of detection (LOD) established at 48.6 fg/¿l. The DNA of the pathogen was not detected by real time PCR in fruit mummies nor inflorescences. It was detected in fruit peduncles and twigs in the season 2016¿2017 with concentrations ranging from 50 to 2742 fg/¿l, confirming that this two loquat organs might act as potential inoculum sources for F. eriobotryae. The detection of F. eriobotryae only in this season agrees with the predictions of an epidemiological model for this pathogen. Our results indicate that in years with a high disease pressure, fruit twigs and peduncles might act as a source of inoculum of new infections the following year.This study was funded by Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) grant number RTA2013-00004-C03-03, and FEDER Funds. G. Elena was supported by the Spanish post-doctoral grant Juan de la Cierva-Formación. We thank the E. Soler from the Cooperativa Agrícola de Callosa d En Sarrià (Alicante, Spain) for his collaboration during orchard sampling, and A. Ramón-Albalat and V. Serra for their technical assistance.Elena-Jiménez, G.; Berbegal Martinez, M.; González Domínguez, E.; Armengol Fortí, J. (2020). Identification of inoculum sources of Fusicladium eriobotryae in loquat orchards in Spain. European Journal of Plant Pathology. 156:425-436. https://doi.org/10.1007/s10658-019-01892-yS425436156Acuña, R. P. (2010). Compendio de bacterias y hongos de frutales y vides en Chile. Santiago de Chile: Servicio Agrícola y Ganadero.Bilodeau, G. J., Koike, S. T., Uribe, P., & Martin, F. N. (2012). Development of an assay for rapid detection and quantification of Verticillium dahliae in soil. Phytopathology, 102, 331–343.Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Hipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.Caballero, P., & Fernández, M. A. (2002). Loquat, production and market. Options Méditerranéennes Serie A, 58, 11–20.Ciliberti, N., Fermaud, M., Languasco, L., & Rossi, V. (2015). Influence of fungal strain, temperature, and wetness duration of infection of grapevine inflorescences and young berry clusteres by Botrytis cinerea. Phytopathology, 105, 325–333.Cullen, D. W., Lees, A. K., Toth, I. K., & Duncan, J. M. (2001). Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. European Journal of Plant Pathology, 107, 387–398.Daniëls, B., De Landtsheer, A., Dreesen, R., Davey, M. W., & Keulemans, J. (2012). Real-time PCR as a promising tool to monitor growth of Venturia spp. in scab-susceptible and -resistant apple leaves. European Journal of Plant Pathology, 134, 821–833.Demaree, J. (1924). Pecan scab with special reference to sources of the early spring infections. Journal of Agriculture Research, 28, 321–330.Ghasemkhani, M., Holefors, A., Marttila, S., Dalman, K., Zborowska, A., Rur, M., Rees-George, J., Nybom, H., Everett, K. R., Scheper, R. W. A., & Garkava-Gustavsson, L. (2016). Real-time PCR for detection and quantification, and histological characterization of Neonectria ditissima in apple trees. Trees, 30, 1111–1125.Gisbert, A. D., Besoain, X., Llácer, G., & Badenes, M. L. (2006). Protección de cultivo II, Enfermedades. In M. Agustí, C. Reig, & P. Undurraga (Eds.), El Cultivo del Níspero Japonés (pp. 227–246). Valencia: Gráficas Alcoy.Gladieux, P., Caffier, V., Devaux, M., & Le Cam, B. (2010). Host specific differentiation among populations of Venturia inaequalis causing scab on apple, pyracantha and loquat. Fungal Genetics and Biology, 47, 511–521.González-Domínguez, E., Rossi, V., Armengol, J., & García-Jiménez, J. (2013). Effect of environmental factors on mycelial growth and conidial germination of Fusicladium eriobotryae, and the infection of loquat leaves. Plant Disease, 97, 1331–1338.González-Domínguez, E., Armengol, J., & Rossi, V. (2014a). Development and validation of a weather-based model for predicting infection of loquat fruit by Fusicladium eriobotryae. PLoS One, 9, e107547.González-Domínguez, E., Rossi, V., Michereff, S. J., García-Jiménez, J., & Armengol, J. (2014b). Dispersal of conidia of Fusicladium eriobotryae and spatial patterns of scab in loquat orchards in Spain. European Journal of Plant Pathology, 139, 849–861.González-Domínguez, E., León, M., Armengol, J., & Berbegal, M. (2015). A nested polymerase chain reaction protocol for in planta detection of Fusicladium eriobotryae, causal agent of loquat scab. Journal of Phytopathology, 163, 415–418.González-Domínguez, E., Armengol, J., & Rossi, V. (2017). Biology and epidemiology of Venturia species affecting fruit crops: A review. Frontiers in Plant Science, 8, 1496.Graniti, A. (1993). Olive scab: A review. EPPO Bulletin, 23, 377–384.Gusberti, M., Patocchi, A., Gessler, C., & Broggini, G. A. L. (2012). Quantification of Venturia inaequalis growth in Malus × domestica with quantitative real-time polymerase chain reaction. Plant Disease, 96, 1791–1797.Janick, J. (2011). Predictions for loquat improvement in the next decade. Acta Horticulturae, 887, 25–30.Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.Lalancette, N., McFarland, K., & Burnett, L. (2012). Modelling sporulation of Fusicladium carpophilum on nectarine twig lesions: Relative humidity and temperature effects. Phytopathology, 102, 421–428.Lin, S. Q. (2007). World loquat production and research with special reference to China. Acta Horticulturae, 750, 37–44.Martínez-Calvo, B. J., Badenes, M. L., Llacer, G., Bleiholder, H., Hack, H., & Meier, U. (1999). Phenological growth stages of loquat tree (Eriobotrya japonica (Thunb) Lindl.). Annals of Applied Biology, 134, 353–357.Pilotti, M., Lumia, V., Di Lernia, G., & Brunetti, A. (2012). Development of real-time PCR for in wood-detection of Ceratocystis platani, the agent of canker stain of Platanus spp. European Journal of Plant Pathology, 134, 61–79.Prota, U. (1960). Ricerche sulla «ticchiolatura del Nespolo del Giappone e sul suo agente (Fusicladium eriobotryae Cav.). I. Observazioni sull’epidemiologia della malattia e sui caratteri morfo-biologici del parassita in Sardegna. Studi di Sassari, 8, 175–196.Ptskialadze, L. (1968). The causal agent of loquat scab and its biological characteristics. Review of Applied Mycology, 47, 268.Raabe, R., & Gardner, M. W. (1972). Scab of pyracantha, loquat, Toyon and Kageneckia. Phytopathology, 62, 914–916.Rodríguez, A. (1983). El cultivo del níspero en el valle del Algar-Guadalest. Sociedad Cooperativa de Crédito de. Alicante: Callosa d’En Sarrià.Salerno, M., Somma, V., & Rosciglione, B. (1971). Ricerche sull’epidemiologia della ticchiolatura del nespolo del giappone. Technology Agriculture, 23, 947–956.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2007a). Fusicladium eriobotryae: hongo causante del moteado del níspero en el Mediterráneo español. Boletín de Sanidad Vegetal. Plagas, 33, 89–98.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2007b). Identification and characterization of Fusicladium eriobotryae: Fungal pathogen causing mediterranean loquat scab. Acta Horticulturae, 750, 343–347.Sánchez-Torres, P., Hinarejos, R., & Tuset, J. J. (2009). Characterization and pathogenicity of Fusicladium eriobotryae, the fungal pathogen responsible for loquat scab. Plant Disease, 93, 1151–1157.Schena, L., Li Destri Nicosia, M. G., Sanzani, S. M., Faedda, R., Ippolito, A., & Cacciola, S. O. (2013). Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. Journal of Plant Pathology, 95, 7–24.Scherm, H., Savelle, A. T., Boozer, R. T., & Foshee, W. G. (2008). Seasonal dynamics of conidial production potential of Fusicladium carpophilum on twig lesions in south eastern peach orchards. Plant Disease, 92, 47–50.Schrader, C., Schielke, A., Ellerbroek, L., & Johne, R. (2012). PCR inhibitors – Occurrence, properties and removal. Journal of Applied Microbiology, 113, 1014–1026.Schubert, K. S., Ritschel, A. R., & Braun, U. B. (2003). A monograph of Fusicladium s. lat. (Hyphomycetes). Schlechtendalia, 9, 1–132.Soler, E., Martínez-Calvo, J., Llácer, G., & Badenes, M. L. (2007). Loquat in Spain: Production and marketing. Acta Horticulturae, 750, 45–47.van Leeuwen, G. C. M., Holb, I. J., & Jeger, M. J. (2002). Factors affecting mummification and sporulation of pome fruit infected by Monilinia fructigena in Dutch orchards. Plant Pathology, 51, 787–793.Villarino, M., Melgarejo, P., Usall, J., Segarra, J., & De Cal, A. (2010). Primary inoculum sources of Monilinia spp. in Spanish peach orchards and their relative importance in brown rot. Plant Disease, 94, 1048–1054.Viruega, J. R., Moral, J., Roca, L. F., Navarro, N., & Trapero, A. (2013). Spilocaea oleagina in olive groves of southern Spain: Survival, inoculum production, and dispersal. Plant Disease, 97, 1549–1556

    Susceptibility to Melampsora leaf rust of poplar clones from diverse genetic backgrounds: effects on photochemistry and water relations

    Full text link
    The selection of resistant genotypes is the most appropriate approach in the prevention of the reduction of biomass and mortality caused by rust infection in poplar plantations. Thus, it is pertinent that we improve our understanding of the consequences that this fungal disease has on leaf physiology. Here, we studied the susceptibility to Melampsora rust in three different poplar clones of commercial interest: Lux clone - Populus deltoides Batr. (cottonwood) and Luisa Avanzo and Adige clones - both Populus × canadensis Mönch. The most susceptible clone to the infection was L. Avanzo whereas Lux and especially Adige were only slightly affected. The propagation of the disease was very rapid in L. Avanzo; their leaves showed a high incidence and severity of the disease in early and advanced stages of infection as was clearly evidenced by the degree of infection. Infected leaves of L. Avanzo were shown to have drought impaired water relations during summer as reflected by the marked decline in the relative water content (RWC). Chlorophyll fluorescence imaging revealed heterogeneity of the effect of the pathogen in the leaves, and areas with pustules showed low maximum quantum yield (Fv/Fm) and PSII quantum yield (?PSII) values, indicative of strong photoinhibition. In L. Avanzo, with a greater pustule density, rust provoked a decline in whole leaf photochemistry as indicated by Fv/Fm and photochemical reflectance index (PRI) results. Leaf structural parameters were not affected by the disease but results in L. Avanzo and Lux showed higher leaf mass per area (LMA) and higher leaf density (D) indicating an adaptation to increasing summer drought. In all clones, the effect of the pathogen was reflected in lower leaf chlorophyll content

    Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov

    Full text link
    [EN] During a survey of black foot disease in Algerian grapevine nurseries, a collection of 79 Cylindrocarpon-like isolates were obtained. Based on morphology and DNA sequence data of histone H3 (his3), three species of Dactylonectria were identified including Dactylonectria torresensis (40 isolates), D. macrodidyma (24 isolates) and D. novozelandica (14 isolates). In addition, one isolate belonging to the genus Pleiocarpon was found and it is described here as a new species, Pleiocarpon algeriense, based on morphological features and DNA sequence data of the internal transcribed spacer region (ITS), translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), large subunit nrDNA (LSU) and histone H3 (his3). This is the first time that these species are reported in Algeria. Pathogenicity tests, were conducted with representative isolates from each species. All of them were able to induce typical necrosis symptoms on grapevine cuttings. These results emphasize the urgent need to implement an integrated management strategy for black foot disease in Algerian grapevine nurseries in order to reduce the incidence of this disease on grapevine planting material and to prevent that it spreads to new grapevine production areas.Much of this work was supported by the laboratory of the Grupo de Investigacion en Hongos Fitopatogenos, Instituto Agroforestal Mediterraneo (IAM), Universitat Politecnica de Valencia (UPV), Spain. W. Aigoun-Mouhous thanks the University of Blida for funding the research stay in Valencia, Spain. G. Elena was supported by the Spanish post-doctoral grant Juan de la Cierva-Formacion. A. Cabral was supported by Portuguese national funds through FundacAo para a Ciencia e a Tecnologia grant SFRH/BPD/84508/2012 and FCT Unit funding UID/AGR/04129/2013. This work was also supported by EFRR "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice" (No. CZ.02.1.01/0.0/0.0/16_025/0007314).Aigoun-Mouhous, W.; Elena-Jiménez, G.; Cabral, A.; León Santana, M.; Sabaou, N.; Armengol Fortí, J.; Chaouia, C.... (2019). Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov. European Journal of Plant Pathology. 154(4):887-901. https://doi.org/10.1007/s10658-019-01708-zS8879011544Abreo, E., Martinez, S., Bettucci, L., & Lupo, S. (2010). Morphological and molecular characterisation of Campylocarpon and Cylindrocarpon spp. associated with black foot disease of grapevines in Uruguay. Australasian Plant Pathology, 39(5), 446–452.Agustí-Brisach, C., & Armengol, J. (2013). Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52, 245–261.Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013). Detection of Blackfoot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137, 103–112.Agustí-Brisach, C., Mostert, L., & Armengol, J. (2014). Detection and quantification of Ilyonectria spp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316–322.Agustí-Brisach, C., Cabral, A., González-Domínguez, E., Pérez-Sierra, A., León, M., Abad-Campos, P., & Armengol, J. (2016). Characterization of Cylindrodendrum, Dactylonectria and Ilyonectria isolates associated with loquat decline in Spain, with description of Cylindrodendrum alicantinum sp. nov. European Journal of Plant Pathology, 145(1), 103–118.Aiello, D., Polizzi, G., Crous, P. W., & Lombard, L. (2017). Pleiocarpon gen. nov. and a new species of Ilyonectria causing basal rot of Strelitzia reginae in Italy. IMA Fungus, 8(1), 65–76.Alaniz, S., León, M., Vicent, A., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2007). Characterization of Cylindrocarpon species associated with black foot disease of grapevine in Spain. Plant Disease, 91(9), 1187–1193.Alaniz, S., Armengol, J., León, M., García-Jiménez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113(1), 16–23.Alvarez, L.A., Tamayo, D., Castilla, C., Munive, J., Agustí-Brisach, C., Gramaje, D. & Armengol, J. (2012). Occurrence of grapevine trunk pathogens in nurseries and vineyards in the northern and southern coast of Peru. 8 th International Workshop on Grapevine Trunk Diseases, Valencia, 18-21, juin 2012.Ammad, F., Benchabane, M., & Toumi, M. (2014). Diversity of fungal trunk pathogens associated with grapevine dieback of grapevine in Algeria. Jordan Journal of Biological Sciences, 7, 35–39.Armengol, J., Vicent, A., García-Jiménez, J., García-Figueres, F., & Torné, L. (2001). Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathologia Mediterranea, 40(40, 3), 1000–1005.Aroca, A., GarcÝa-Figueres, F., Bracamonte, L., Luque, J., & Raposo, R. (2006). A survey of trunk disease pathogens within rootstocks of grapevines in Spain. European Journal of Plant Pathology, 115(2), 195.Auger, J., Esterio, M., & Pérez, I. (2007). First report of black foot disease of grapevine caused by Cylindrocarpon macrodidymum in Chile. Plant Disease, 91, 470.Badour, C. (1969). Gangrène ou Pied noir. Le Vigneron Champenois, 5, 197–201.Berlanas, C., López-Manzanares, B., & Gramaje, D. (2017). Estimation of viable propagules of black-foot disease pathogens in grapevine cultivated soils and their relation to production systems and soil properties. Plant and Soil, 417, 467–479.Berraf, A., & Peros, J. (2005). Importance of Eutypa dieback and esca in Algeria and structure of the associated fungal community. Journal International des Sciences de la Vigne et du Vin, 39(3), 121–128.Berraf-Tebbal, A., Bouznad, Z., Santos, J. M., Coelho, M., Peros, J. P., & Phillips, A. J. L. (2011). Phaeoacremonium species associated with Eutypa dieback and esca of grapevines in Algeria. Phytopathologia Mediterranea, 50(4), 86–97.Berraf-Tebbal, A., Guereiro, M. A., & Phillips, A. J. (2014). Phylogeny of Neofusicoccum species associated with grapevine trunk diseases in Algeria, with description of Neofusicoccum algeriense sp. nov. Phytopathologia Mediterranea, 53, 416–427.Bertsch, C., Ramírez-Suero, M., Magnin-Robert, M., Larignon, P., Chong, J., Abou-Mansour, E., Spagnolo, A., Clément, C., & Fontaine, F. (2013). Grapevine trunk diseases: complex and still poorly understood. Plant Pathology, 62(2), 243–265.Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012a). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116(1), 62–80.Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2012b). Cylindrocarpon root rot: multi-gene analysis reveals novel species within Ilyonectria radicicola species complex. Mycological Progress, 11, 655–688.Carlucci, A., Francesco, L., Mostert, L., Halleen, F., & Raimondo, M. L. (2017). Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathologia Mediterranea, 56(1), 10–39.Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A., & Samuels, G. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57–78.Crous, P. W., Gams, W., Stalpers, J. A., Robert, V., & Stegehuis, G. (2004a). MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology, 50, 19–12.Crous, P. W., Groenewald, J. Z., Risède, J.-M., Simoneau, P., & Hywel-Jones, N. L. (2004b). Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology, 50, 415–430.Crous, P. W., Verkley, G. J. M., Groenewald, J. Z., & Samson, R. A. (2009). CBS Laboratory manual series 1: Fungal biodiversity. CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.Debray, F. (1892). Apoplexie de la vigne. Progres Agricole et Viticole, 17, 528–531.Dubrovsky, S., & Fabritius, A. L. (2007). Occurrence of Cylindrocarpon spp. in nursery grapevines in California. Phytopathologia Mediterranea, 46(1), 84–86.Fourie, P., & Halleen, F. (2001). Diagnosis of fungal diseases and their involvement in dieback disease of young vines. Wynboer, 149, 19–23.Fourie, P., & Halleen, F. (2004). Occurrence of grapevine trunk disease pathogens in rootstock mother plants in South Africa. Australasian Plant Pathology, 33(2), 313–315.Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.Garrido, L. D. R., Sônego, O. R., & Urben, A. F. (2004). Cylindrocarpon destructans causal agent of grapevine black-foot in Rio Grande do Sul. Fitopatologia Brasileira, 29(5), 548–550.Glass, N. L., & Donaldson, G. (1995). Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61, 1323–1330.Gramaje, D., & Armengol, J. (2011). Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Disease, 95(9), 1040–1055.Gramaje, D., & Di Marco, S. (2015). Identifying practices likely to have impacts on grapevine trunk disease infections: a European nursery survey. Phytopathologia Mediterranea, 54(2), 313–324.Gramaje, D., Armengol, J., Colino, M., Santiago, R., Moralejo, E., Olmo, D., Luque, J., & Mostert, L. (2009). First report of Phaeoacremonium inflatipes, P. iranianum and P. sicilianum causing Petri disease of grapevine in Spain. Plant Disease, 93, 964.Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease, 102(4), 12–39.Halleen, F., Crous, R., & Petrin, O. (2003). Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Australasian Plant Pathology, 32(1), 47–52.Halleen, F., Schroers, H. J., Groenewald, J. Z., & Crous, P. W. (2004). Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. Nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology, 50(2), 431–455.Halleen, F., Schroers, H. J., Groenewald, J. Z., Rego, C., Oliveira, H., & Crous, P. W. (2006). Neonectria liriodendri sp. nov., the main causal agent of black foot disease of grapevines. Studies in Mycology, 55, 227–234.Hallenn, F., Fourie, P. H., & Crous, P. W. (2006). A review of black foot disease of grapevine. Phytopathologia Mediterranea, 45(4), 55–67.Hofstetter, V., Casieri, L., Viret, O., & Gindro, K. (2009). Esca de la vigne et communauté fongique. Revue suisse Vitic. Arboric. Hortic, 41, 247–253.Hofstetter, V., Dubuis, P. H., Zufferey, V., Fabre, A. L., Viret, O., & Gindro, K. (2017). Maladies du bois de la vigne: état des lieux et axes de recherche d’Agroscope. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 49(2), 88–96.Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.Larignon, P. (2012). Maladies cryptogamiques du bois de la vigne : symptomatologie et agents pathogènes. http://www.vignevin.com , 2-5.Larignon, P. (2016). Maladies cryptogamiques du bois de la vigne : symptomatologie et agents pathogènes. http://www.vignevin.com , 2ème édition, 23-27.Levadoux, L., Benabderrabou, A., & Douaouri, B. (1971). Ampelographie algerienne; cepages de cuve et de table cultives en Algerie. p 118Lombard, L., Van Der Merwe, A., Groenewald, J. Z., & Crous, P. W. (2014). Lineages in Nectriaceae: re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53(3), 515–532.Maluta, D., & Larignon, P. (1991). Pied-noir: mieux vaut prévenir. Viticulture, 11, 71–72.Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop, New Orleans, LA, 14 Nov 2010, pp 1-8.Moncalvo, J. M., Wang, H. H., & Hseu, R. S. (1995). Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia, 87, 223–238.Mora-Sala, B., Cabral, A., León, M., Agustí-Brisach, C., Armengol, J., & Abad-Campos, P. (2018). Survey, identification, and characterisation of Cylindrocarpon-like asexual morphs in Spanish forest nurseries. Plant Disease, 102, 2083–2100.Mugnai, L., Graniti, A., & Surico, G. (1999). Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Disease, 83, 404–418.Munive, J., Tamayo, D., Castilla, P.C., Agustí-Brisach, C., Gramaje, D., Armengol, J., & Alvarez, L.A. (2013). Especies de hongos de madera de vid asociados a infecciones de plantas en viveros y en campos en producción en el Perú XXII Congresso Peruano y XVII Congresso Latinoamericano de Fitopatologia. Lambayeque, Perú, 1–5, octubre 2013, 115–116.Nirenberg, H. (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Section Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, 169, 1–117.O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.O’Gorman, D. T., Haag, P., & Sholberg, P. L. (2009). News diseases causing decline of wine grapes in the Okanagan valley. In: Canadian plant disease survey. The Canadian Phytopathological Society, 90, 140–143.O'Donnell, K., Sarver, B. A., Brandt, M., et al. (2007). Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. Journal of Clinical Microbiology, 45, 2235–2248.Oliveira, H., Rego, M. C., & Nascimento, T. (2004). Decline of young grapevines caused by fungi. Acta Horticulturae, 652, 295–304.Özben, S., Demirci, F., Değirmenci, K., & Uzunok, S. (2012). First report of Cylindrocarpon macrodidymum associated with black foot diseases of grapevine in Turkey. Plant Disease, 96(5), 762–762.Petit, E., & Gubler, W. D. (2005). Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89, 1051–1059.Petit, E., Barriault, E., Baumgartner, K., Wilcox, W. F., & Rolshausen, P. E. (2011). Cylindrocarpon species associated with black-foot of grapevine in northeastern United States and southeastern Canada. American Journal of Enology and Viticulture, 62, 177–183.Ravaz, L. (1905). Sur la cause du dépérissement des vignes de la Tunisie, de l'Algérie et du Midi de la France. (Ursache des Zurückgehens der Reben in Tunis, Algier und Südfrankreich): JSTOR.Rayner, R. W. (1970). A mycological colour chart. A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society. Kew Surrey. United Kingdom.Rego, M. (1994). Nova e grave micose da videira em Portugal. Agente responsável: Cylindrocarpon destructans (Zins.) Scholten. Publicação do Laboratório de Patologia Vegetal Veríssimo de Almeida, 67, 1–4.Rego, C., Oliveira, H., Carvalho, A., & Phillips, A. (2000). Involvement of Phaeoacremonium spp. and Cylindrocarpon destructans with grapevine decline in Portugal [Vitis vinifera L.]. Phytopathologia Mediterranea (Italy), 39, 76–79.Reis, P., Cabral, A., Nascimento, T., Oliveira, H., & Rego, C. (2013). Diversity of Ilyonectria species in a young vineyard affected by black foot disease. Phytopathologia Mediterranea, 52(2), 335–346.Ridgway, H. J., Sleight, B. E., & Steward, A. (2002). Molecular evidence for the presence of Phaeomoniella chlamydospora in New Zealand nurseries, and its detection in rootstock mothervines using species-specific PCR. Australasian Plant Pathology, 31, 267–271.Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.Rumbos, I., & Rumbou, A. (2001). Fungi associated with esca and young grapevine decline in Greece. Phytopathologia Mediterranea, 40(3), 330–335.Santos, R. F., Blume, E., Muniz, M. F. B., Heckler, L. I., Finger, G., & Maciel, C. G. (2014). First report of Ilyonectria macrodidyma associated with black foot disease of grapevine in Brazil. Plant Disease, 98, 156.Sweetingham, M. W. (1983). Studies on the nature of the pathogenicity of soil-borne Cylindrocarpon species. Ph. D. Thesis. University of Tasmania.Urbez-Torres, J. R. (2011). The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea, 50(4), 5–45.Úrbez-Torres, J. R., Haag, P., Bowen, P., & O’Gorman, D. T. (2014). Grapevine trunk diseases in British Columbia: incidence and characterization of the fungal pathogens associated with black foot disease of grapevine. Plant Disease, 98(4), 56–468.Vaidya, G., Lohman, D. J., & Meier, R. (2011). SequenceMatrix: conca-tenation software for the fast assembly of multigene data-sets with character set and codon information. Cladistics, 27(2), 171–180.Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 4238–4246.Viret, O. & Gindro, K. (2014). La Vigne, vol. 1. Maladies fongiques. Editions AMTRA, Nyon, 255 p.White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols – a guide to methods and applications (pp. 315–322). Academic Press: New York.Whitelaw-Weckert, M. A., Nair, N. G., Lamont, R., Alonso, M., Priest, M. J., & Huang, R. (2007). Root infection of Vitis vinifera by Cylindrocarpon liriodendri in Australia. Australasian Plant Pathology, 36, 403–406

    Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico

    Full text link
    This is the peer reviewed version of the following article: Rêgo, T.J.S., Elena, G., Correia, K.C., Tovar‐Pedraza, J.M., Câmara, M.P.S., Armengol, J., Michereff, S.J. and Berbegal, M. (2019), Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico. Plant Pathol, 68: 930-938. doi:10.1111/ppa.12997 , which has been published in final form athttps://doi.org/10.1111/ppa.12997. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Lasiodiplodia theobromae is one of the most frequent fungal pathogens associated with dieback, gummosis, leaf spot, stem-end rot and fruit rot symptoms in cashew, mango, papaya and grapevine. In this study, the variation in the genetic diversity of 117 L. theobromae isolates from northeastern Brazil (n = 100) and Mexico (n = 17), which were collected from these four crops, was analysed using microsatellite markers. The results revealed low genetic diversity among L. theobromae populations and the existence of two genetic groups. All Mexican isolates were grouped with Brazilian isolates, suggesting a low level of differentiation between these populations. Furthermore, no evident host or climate-based population differentiation was observed for L. theobromae in Brazil. The populations studied were mostly clonal, but additional studies are needed to better understand the mode of reproduction of the pathogen. The low genetic diversity of L. theobromae populations in northeastern Brazil suggests that resistant cultivars could be used as a durable management strategy to reduce the impact of the diseases caused by this pathogen.This study was financially supported by CoordenacAo de Aperfeicoamento de Pessoal de Nivel Superior - CAPES, 'Ciencia sem Fronteiras - CAPES' (number 88881.132070/2016-01) and the Universitat Politecnica de Valencia. G.E. was supported by the Spanish postdoctoral grant Juan de la Cierva-Formacion. The authors thank Maela Leon and Valentin Garrigues (Universitat Politecnica de Valencia, Valencia, Spain) for laboratory support. The authors declare no conflicts of interest.Rêgo, T.; Elena-Jiménez, G.; Correia, KC.; Tovar-Pedraza J.M.; Câmara, MPS.; Armengol Fortí, J.; Michereff, SJ.... (2019). Genetic diversity and population structure of Lasiodiplodia theobromae from different hosts in northeastern Brazil and Mexico. Plant Pathology. 68(5):930-938. https://doi.org/10.1111/ppa.12997S930938685Agapow, P.-M., & Burt, A. (2001). Indices of multilocus linkage disequilibrium. Molecular Ecology Notes, 1(1-2), 101-102. doi:10.1046/j.1471-8278.2000.00014.xAlvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728. doi:10.1127/0941-2948/2013/0507Archer, F. I., Adams, P. E., & Schneiders, B. B. (2016). stratag: Anrpackage for manipulating, summarizing and analysing population genetic data. Molecular Ecology Resources, 17(1), 5-11. doi:10.1111/1755-0998.12559ARNAUD-HAOND, S., DUARTE, C. M., ALBERTO, F., & SERRÃO, E. A. (2007). Standardizing methods to address clonality in population studies. Molecular Ecology, 16(24), 5115-5139. doi:10.1111/j.1365-294x.2007.03535.xBegoude Boyogueno, A. D., Slippers, B., Perez, G., Wingfield, M. J., & Roux, J. (2012). High gene flow and outcrossing within populations of two cryptic fungal pathogens on a native and non-native host in Cameroon. Fungal Biology, 116(3), 343-353. doi:10.1016/j.funbio.2011.12.001Berbegal, M., Pérez-Sierra, A., Armengol, J., & Grünwald, N. J. (2013). Evidence for Multiple Introductions and Clonality in Spanish Populations of Fusarium circinatum. Phytopathology®, 103(8), 851-861. doi:10.1094/phyto-11-12-0281-rBRUVO, R., MICHIELS, N. K., D’SOUZA, T. G., & SCHULENBURG, H. (2004). A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Molecular Ecology, 13(7), 2101-2106. doi:10.1111/j.1365-294x.2004.02209.xBurgess, T., Wingfield, M. J., & Wingfield, B. D. (2003). Development and characterization of microsatellite loci for the tropical tree pathogen Botryosphaeria rhodina. Molecular Ecology Notes, 3(1), 91-94. doi:10.1046/j.1471-8286.2003.00361.xBurgess, T. I., Barber, P. A., Mohali, S., Pegg, G., de Beer, W., & Wingfield, M. J. (2006). Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia, 98(3), 423-435. doi:10.3852/mycologia.98.3.423Burgess, T. I., Crous, C. J., Slippers, B., Hantula, J., & Wingfield, M. J. (2016). Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB Plants, 8, plw076. doi:10.1093/aobpla/plw076Correia, K. C., Silva, M. A., de Morais, M. A., Armengol, J., Phillips, A. J. L., Câmara, M. P. S., & Michereff, S. J. (2015). Phylogeny, distribution and pathogenicity ofLasiodiplodiaspecies associated with dieback of table grape in the main Brazilian exporting region. Plant Pathology, 65(1), 92-103. doi:10.1111/ppa.12388Coutinho, I. B. L., Freire, F. C. O., Lima, C. S., Lima, J. S., Gonçalves, F. J. T., Machado, A. R., … Cardoso, J. E. (2016). Diversity of genusLasiodiplodiaassociated with perennial tropical fruit plants in northeastern Brazil. Plant Pathology, 66(1), 90-104. doi:10.1111/ppa.12565Cruywagen, E. M., Slippers, B., Roux, J., & Wingfield, M. J. (2017). Phylogenetic species recognition and hybridisation in Lasiodiplodia : A case study on species from baobabs. Fungal Biology, 121(4), 420-436. doi:10.1016/j.funbio.2016.07.014Dray, S., & Dufour, A.-B. (2007). Theade4Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4). doi:10.18637/jss.v022.i04PINAUD, D., & WEIMERSKIRCH, H. (2007). At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study. Journal of Animal Ecology, 76(1), 9-19. doi:10.1111/j.1365-2656.2006.01186.xFAO 2018.FAOSTAT. [http://www.fao.org/faostat/en/#data/QC]. Accessed 8 August 2018.Grünwald, N. J., Goodwin, S. B., Milgroom, M. G., & Fry, W. E. (2003). Analysis of Genotypic Diversity Data for Populations of Microorganisms. Phytopathology®, 93(6), 738-746. doi:10.1094/phyto.2003.93.6.738Grünwald, N. J., Everhart, S. E., Knaus, B. J., & Kamvar, Z. N. (2017). Best Practices for Population Genetic Analyses. Phytopathology®, 107(9), 1000-1010. doi:10.1094/phyto-12-16-0425-rvwHedrick, P. W. (2005). A STANDARDIZED GENETIC DIFFERENTIATION MEASURE. Evolution, 59(8), 1633-1638. doi:10.1111/j.0014-3820.2005.tb01814.xIBGE 2018.PAM 2016: valor da produção agrícola nacional foi 20% maior do que em 2015. Instituto Brasileiro de Geografia e Estatística. [https://agenciadenoticias.ibge.gov.br/agencia-noticias/2013-agencia-de-noticias/releases/16814‐pam‐2016‐valor‐da‐producao‐agricola‐nacional‐foi‐20‐maior‐do‐que‐em‐2015.ht ml]. Accessed 8 August 2018.Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. doi:10.1093/bioinformatics/btn129Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94. doi:10.1186/1471-2156-11-94Kamvar, Z. N., Brooks, J. C., & Grünwald, N. J. (2015). Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics, 6. doi:10.3389/fgene.2015.00208Marques, M. W., Lima, N. B., de Morais, M. A., Barbosa, M. A. G., Souza, B. O., Michereff, S. J., … Câmara, M. P. S. (2013). Species of Lasiodiplodia associated with mango in Brazil. Fungal Diversity, 61(1), 181-193. doi:10.1007/s13225-013-0231-zBEVAN, J. R., CLARKE, D. D., & CRUTE, I. R. (1993). Resistance to Erysiphe fischeri in two populations of Senecio vulgaris. Plant Pathology, 42(4), 636-646. doi:10.1111/j.1365-3059.1993.tb01544.xMehl, J., Wingfield, M., Roux, J., & Slippers, B. (2017). Invasive Everywhere? Phylogeographic Analysis of the Globally Distributed Tree Pathogen Lasiodiplodia theobromae. Forests, 8(5), 145. doi:10.3390/f8050145BARRETT, L. G., & BRUBAKER, C. L. (2006). Isolation and characterization of microsatellite loci from the rust pathogen, Melampsora lini. Molecular Ecology Notes, 6(3), 930-932. doi:10.1111/j.1471-8286.2006.01404.xMohali, S., Burgess, T. I., & Wingfield, M. J. (2005). Diversity and host association of the tropical tree endophyte Lasiodiplodia theobromae revealed using simple sequence repeat markers. Forest Pathology, 35(6), 385-396. doi:10.1111/j.1439-0329.2005.00418.xNetto, M. S. B., Assunção, I. P., Lima, G. S. A., Marques, M. W., Lima, W. G., Monteiro, J. H. A., … Câmara, M. P. S. (2014). Species of Lasiodiplodia associated with papaya stem-end rot in Brazil. Fungal Diversity, 67(1), 127-141. doi:10.1007/s13225-014-0279-4Netto, M. S. B., Lima, W. G., Correia, K. C., da Silva, C. F. B., Thon, M., Martins, R. B., … Câmara, M. P. S. (2017). Analysis of phylogeny, distribution, and pathogenicity of Botryosphaeriaceae species associated with gummosis of Anacardium in Brazil, with a new species of Lasiodiplodia. Fungal Biology, 121(4), 437-451. doi:10.1016/j.funbio.2016.07.006Phillips, A. J. L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M. J., Groenewald, J. Z., & Crous, P. W. (2013). The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology, 76, 51-167. doi:10.3114/sim0021Santos, P. H. D., Carvalho, B. M., Aguiar, K. P., Aredes, F. A. S., Poltronieri, T. P. S., Vivas, J. M. S., … Silveira, S. F. (2017). Phylogeography and population structure analysis reveals diversity by mutations in Lasiodiplodia theobromae with distinct sources of selection. Genetics and Molecular Research, 16(2). doi:10.4238/gmr16029681Schuelke, M. (2000). An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18(2), 233-234. doi:10.1038/72708Shah, M.-U.-D., Verma, K. S., Singh, K., & Kaur, R. (2011). Genetic diversity and gene flow estimates among three populations ofBotryodiplodia theobromaecausing die-back and bark canker of pear in Punjab. Archives Of Phytopathology And Plant Protection, 44(10), 951-960. doi:10.1080/03235400903458829Slippers, B., & Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21(2-3), 90-106. doi:10.1016/j.fbr.2007.06.002VARSHNEY, R., GRANER, A., & SORRELLS, M. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10(12), 621-630. doi:10.1016/j.tplants.2005.10.004Winter, D. J. (2012). mmod: an R library for the calculation of population differentiation statistics. Molecular Ecology Resources, 12(6), 1158-1160. doi:10.1111/j.1755-0998.2012.03174.

    Analysis of the geological control on the spatial distribution of potentially toxic concentrations of As and F- in groundwater on a Pan-European scale

    Get PDF
    The distribution of the high concentrations of arsenic (As) and fluoride (F-) in groundwater on a Pan-European scale could be explained by the geological European context (lithology and structural faults). To test this hypothesis, seventeen countries and eighteen geological survey organizations (GSOs) have participated in the dataset. The methodology has used the HydroGeoToxicity (HGT) and the Baseline Concentration (BLC) index. The results prove that most of the waters considered in this study are in good conditions for drinking water consumption, in terms of As and/or F- content. A low proportion of the analysed samples present HGT≥ 1 levels (4% and 7% for As and F-, respectively). The spatial distribution of the highest As and/or F- concentrations (via BLC values) has been analysed using GIS tools. The highest values are identified associated with fissured hard rock outcrops (crystalline rocks) or Cenozoic sedimentary zones, where basement fractures seems to have an obvious control on the distribution of maximum concentrations of these elements in groundwaters.This research was co-funded by the European Union’s Horizon 2020 research and innovation program (GeoERA HOVER project) under grant agreement number 731166. D. Voutchkova, B. Hansen, and J. Schullehner were also supported by Innovation Fund Denmark (funding agreement number 8055- 00073B). N. Rman participation was supported by the Slovenian Research Agency, research program P1-0020 Groundwaters and Geochemistry. A. Felter, J. Cabalska and A. Mikołajczyk participation was supported by the Polish Ministry of Education and Science. E. Giménez-Forcada is grateful for the support received from the CIPROM/2021/032 Project. Valencian Government. University of Valencia (Spain)

    Jardins per a la salut

    Get PDF
    Facultat de Farmàcia, Universitat de Barcelona. Ensenyament: Grau de Farmàcia. Assignatura: Botànica farmacèutica. Curs: 2014-2015. Coordinadors: Joan Simon, Cèsar Blanché i Maria Bosch.Els materials que aquí es presenten són el recull de les fitxes botàniques de 128 espècies presents en el Jardí Ferran Soldevila de l’Edifici Històric de la UB. Els treballs han estat realitzats manera individual per part dels estudiants dels grups M-3 i T-1 de l’assignatura Botànica Farmacèutica durant els mesos de febrer a maig del curs 2014-15 com a resultat final del Projecte d’Innovació Docent «Jardins per a la salut: aprenentatge servei a Botànica farmacèutica» (codi 2014PID-UB/054). Tots els treballs s’han dut a terme a través de la plataforma de GoogleDocs i han estat tutoritzats pels professors de l’assignatura. L’objectiu principal de l’activitat ha estat fomentar l’aprenentatge autònom i col·laboratiu en Botànica farmacèutica. També s’ha pretès motivar els estudiants a través del retorn de part del seu esforç a la societat a través d’una experiència d’Aprenentatge-Servei, deixant disponible finalment el treball dels estudiants per a poder ser consultable a través d’una Web pública amb la possibilitat de poder-ho fer in-situ en el propi jardí mitjançant codis QR amb un smartphone

    Diseño para el desarrollo sustentable y la habitabilidad segura e incluyente

    Get PDF
    Este libro se divide en dos partes que permiten permear en el campo de la enseñanza del diseño; la primera se enfoca en temáticas que se desprenden del diseño en la educación para la sustentabilidad; en la segunda, se identifican las tendencias del diseño como un modo de verlo y sentirlo: va desde el diseño emocional hacia uno de conservación, reúso y reparación de objetos para reducir el consumo de recursos materiales

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    1er. Coloquio de educación para el diseño en la sociedad 5.0

    Get PDF
    Las memorias del 1er. Coloquio de Educación para el Diseño en la Sociedad 5.0 debenser entendidas como un esfuerzo colectivo de la comunidad de académicos de la División de Ciencias y Artes para el Diseño, que pone de manifiesto los retos y oportunidades que enfrenta la educación en diseño en un contexto de cambio acelerado y rompimiento de paradigmas.El evento se realizó el pasado mes de mayo de 2018 y se recibieron más de 50 ponencias por parte de las profesoras y profesores de la División.Las experiencias y/o propuestas innovadoras en cuanto a procesos de enseñanza y aprendizaje que presentan los autores en cada uno de sus textos son una invitación a reflexionar sobre nuestra situación actual en la materia, y emprender acciones en la División para continuar brindando una educación de calidad en diseño a nuestras alumnas, alumnos y la sociedad.Adicionalmente, se organizaron tres conferencias magistrales sobre la situación actual de la educación en Diseño y de las Instituciones de Educación Superior, impartidas por el Mtro. Luis Sarale, profesor de la Universidad Nacional de Cuyo en Mendoza (Argentina), y Presidente en su momento, de la Red de Carreras de Diseño en Universidades Públicas Latinoamericanas (DISUR), el Dr. Romualdo López Zárate, Rector de la Unidad Azcapotzalco, así como del Mtro. Luis Antonio Rivera Díaz, Jefe de Departamento de Teoría y Procesos del Diseño de la División de la Ciencias de la Comunicación y Diseño, en la Unidad Cuajimalpa de nuestra institución.La publicación de estas memorias son un esfuerzo divisional, organizado desde la Coordinación de Docencia Divisional y la Coordinación de Tecnologías del Aprendizaje, del Conocimiento y la Comunicación, para contribuir a los objetivos planteados en el documento ACCIONES:Agenda CyAD2021, en particular al eje de Innovación Educativa. Es necesario impulsar a todos los niveles de la División espacios de discusión orientados a reflexionar sobre el presente y futuro en la educación del diseñador, que contribuya a mejorar la calidad de la docencia y favorezca al fortalecimiento de los procesos de enseñanza y aprendizaje.Finalmente, extiendo un amplio reconocimiento a todos los miembros de la División que hicieron posible este evento, así como a todos los ponentes y participantes por compartir su conocimiento para que la División sea cada día mejor

    Biologia i epidemiologia de fongs patògens de la fusta de la vinya i noves perspectives en el seu control = Biology and epidemiology of grapevine trunk pathogenic fungi and new perspectives on their control

    Get PDF
    [cat] En les últimes dècades, les malalties de la fusta de la vinya han estat motiu d’una preocupació creixent, paral·lela a l’augment de la seva incidència arreu del món. En aquest context, l’objectiu global d’aquesta tesi ha estat el d’ampliar el coneixement de la biologia i l’epidemiologia d’aquestes malalties, així com el de valorar l’aplicació d’aquests nous coneixements en seu el control. Diferents espècies de fongs de la família Botryosphaeriaceae -entre elles, Diplodia seriata-, Eutypa lata i Phaeomoniella chlamydospora són alguns dels fongs patògens més importants. En un primer estudi es van caracteritzar 83 soques de D. seriata, des del punt de vista molecular, fenotípic -basat en la morfologia dels conidis, el creixement miceliar i la compatibilitat vegetativa i sexual- i patogènic. L’estudi molecular va mostrar un polimorfisme del 88 % entre les soques, que es van classificar en dos grups genètics diferenciats. La resta d’estudis realitzats no van ser congruents amb l’agrupació genètica establerta i es va posar de manifest una gran variabilitat intraespecífica a D. seriata. Malgrat això, es va confirmar el caràcter patogènic d’aquesta espècie. Per a millorar algunes tècniques de treball amb els tres patògens citats anteriorment, es va determinar el rang de concentració d’espores òptim per a realitzar inoculacions artificials en sarments de vinya. Per a obtenir percentatges d’infecció d’entre 50 i 70 % van ser necessaris de 100 a 1000 conidis de D. seriata per ferida inoculada, de 100 a 2000 conidis de P. chlamydospora i de 100 a 500 ascòspores d’E. lata. Es va estudiar l’alliberament de conidis de D. seriata en les restes de poda de la vinya. Es va observar la reducció progressiva de l’inòcul, amb disminucions significatives en el nombre de picnidis amb conidis, el nombre de conidis per picnidi i el seu percentatge de germinació . Tot i això, tres anys i mig després de la poda encara es detectaven conidis amb capacitat germinativa, fet indicatiu d’una gran persistència de la font d’inòcul. Es va determinar la micoflora d’infeccions naturals de les ferides de poda de la vinya. Els fongs més freqüents van ser, en ordre decreixent, D. seriata, P. chlamydospora i Cryptovalsa ampelina. En conjunt, les infeccions van ser més freqüents després de la poda d’hivern, en comparació amb la poda primerenca, a la tardor. La pluja acumulada després de la poda i les temperatures registrades durant aquest període van correlacionar positivament amb els percentatges d’infecció observats. La susceptibilitat de les ferides de poda a D. seriata i P. chlamydospora va disminuir a mesura que augmentava el temps entre la poda i la infecció. Les ferides van restar més temps susceptibles a la infecció de D. seriata després d’una poda a l’hivern. La longitud de l’entrenús podat no va semblar interferir en la colonització del sarment de D. seriata; en canvi, va dificultar la de P. chlamydospora. Finalment, es va estudiar l’efecte del tractament de termoteràpia amb aigua calenta sobre la viabilitat de vuit espècies de Botryosphaeriaceae. En un primer assaig in vitro, es va avaluar la supervivència i el creixement del miceli després de sotmetre els fongs a diverses combinacions de temps i temperatura en un bany d’aigua calenta. En un segon assaig in planta, els fongs, prèviament inoculats en sarments de vinya, es van sotmetre a un rang de 50-53 °C durant 30 minuts i se’n va determinar la supervivència. En l’assaig in vitro, D. seriata, Spencermartinsia viticola, Neofusicoccum luteum i N. parvum van ser les espècies més sensibles, i N. vitifusiforme i Lasiodiplodia theobromae, les més tolerants. En l’assaig in planta, totes les espècies van ser controlades a 51 °C, quedant demostrada l’eficàcia d’aquesta tècnica i la seva potencialitat per a ser usada en el procés de producció de planta al viver.[eng] This thesis aimed at providing new background knowledge about the biology and epidemiology of grapevine trunk diseases as well as to integrate the outcome into the development of new control measures. Some of the most relevant trunk pathogenic fungi including Diplodia seriata, Phaeomoniella chlamydospora and Eutypa lata were studied. Eighty-three D. seriata isolates were characterized with respect to their genetic, phenotypic and pathogenic features. Isolates were grouped into two distinct genetic groups. No relationships between these groups and the other studied variables were found. Diplodia seriata was confirmed as a weak grapevine pathogen but showing intraespecific variability in terms of virulence. In order to optimize the inoculum potential used in artificial inoculations with D. seriata, E. lata and P. chlamydospora, grapevine pruning wounds were inoculated with different spore doses. Infection percentages between 50-70 % were achieved when inoculating with 100-1000 conidia of D. seriata per wound, 100-2000 conidia of P. chlamydospora and 100-500 ascospores of E. lata. Release of D. seriata conidia from pruning debris was assessed. A progressive reduction in inoculum pressure was recorded as a decrease in pycnidia that contained conidia, mean amount of conidia per pycnidium and conidial viability. However, 3.5 years after pruning, viable conidia were still detected, thus confirming that pruning debris is an important long-lasting inoculum source. Pathogenic micoflora resulting from natural infections of pruning wounds included, in order of descending abundance, D. seriata, P. chlamydospora, Cryptovalsa ampelina and E. lata. Infection rates were generally higher after a late punning in winter as compared with those of an early pruning in autumn. The susceptibility of pruning wounds to D. seriata and P. chlamydospora decreased as the time between pruning and infection events increased. Pruning wounds remained more susceptible to D. seriata after a late pruning in winter. The length of the pruned internode did not inhibit cane colonization by D. seriata, but it did for P. chlamydospora. Hot water treatment reduced the viability and mycelial growth of eight Botryosphaeriaceae species in laboratory tests, thus showing the feasibility of this technique as a means of control in the grapevine propagation process
    corecore