7 research outputs found
In Vitro
Stryphnodendron species, popularly named “barbatimão,” are traditionally used in Brazil as anti-inflammatory agents. This study aimed to investigate the effect of barbatimão and 11 other species on the production of tumor necrosis factor-alpha (TNF-α) in lipopolysaccharide- (LPS-) stimulated THP-1 cells, as well as their anti-arthritis activity. The extracts of Stryphnodendron adstringens, Stryphnodendron obovatum, Campomanesia lineatifolia, and Terminalia glabrescens promoted a concentration-dependent inhibition of TNF-α. Mice injected with LPS in the knee joint were treated per os with fractions from the selected extracts. Both the organic (SAO) and the aqueous (SAA) fractions of S. adstringens promoted a dose-dependent reduction of leukocyte migration and neutrophil accumulation into the joint, but none of them reduced CXCL1 concentration in the periarticular tissue. In contrast, treatment with C. lineatifolia and T. glabrescens fractions did not ameliorate the inflammatory parameters. Analyses of SAO by Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS) led to the identification of gallic acid along with 11 prodelphinidins, characterized as monomers and dimers of the B-type. Our findings contribute to some extent to corroborating the traditional use of S. adstringens as an anti-inflammatory agent. This activity is probably related to a decrease of leukocyte migration into the inflammatory site. Polyphenols like gallic acid and prodelphinidins, identified in the active fraction, may contribute to the observed activity
Field and classroom initiatives for portable sequence-based monitoring of dengue virus in Brazil
This work was supported by Decit, SCTIE, Brazilian
Ministry of Health, Conselho Nacional de Desenvolvimento Científico - CNPq (440685/
2016-8, 440856/2016-7 and 421598/2018-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES - (88887.130716/2016-00), European Union’s Horizon
2020 Research and Innovation Programme under ZIKAlliance Grant Agreement
(734548), STARBIOS (709517), Fundação de Amparo à Pesquisa do Estado do Rio de
Janeiro – FAPERJ (E-26/2002.930/2016), International Development Research Centre
(IDRC) Canada (108411-001), European Union’s Horizon 2020 under grant agreements
ZIKACTION (734857) and ZIKAPLAN (734548).Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil / Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil Latin American Genomic Surveillance Arboviral Network.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Secretaria de Saúde do Estado de Mato Grosso do Sul. Laboratório Central de Saúde Pública. Campo Grande, MS, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Secretaria de Saúde do Estado da Bahia. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Fundação Ezequiel Dias. Laboratório Central de Saúde Pública do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Organização Pan-Americana da Saúde / Organização Mundial da Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde Coordenação Geral das Arboviroses. Brasília, DF, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Gorgas Memorial Institute for Health Studies. Panama, Panama.Universidade Federal da Bahia. Vitória da Conquista, BA, Brazil.Laboratorio Central de Salud Pública. Asunción, Paraguay.Fundação Oswaldo Cruz. Bio-Manguinhos. Rio de Janeiro, RJ, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação Geral dos Laboratórios de Saúde Pública. Brasília, DF, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso do Sul. Campo Grande, MS, Brazil.Instituto de Investigaciones en Ciencias de la Salud. San Lorenzo, Paraguay.Secretaria de Estado de Saúde de Mato Grosso do Sul. Campo Grande, MS, Brazil.Fundação Oswaldo Cruz. Campo Grande, MS, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Dr. Giovanni Cysneiros. Goiânia, GO, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Dr. Milton Bezerra Sobral. Recife, PE, Brazil.Laboratório Central de Saúde Pública do Distrito Federal. Brasília, DF, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, Ba, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte, MG, Brazil.Hospital das Forças Armadas. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Nova de Lisboa. Instituto de Higiene e Medicina Tropical. Lisboa, Portugal.University of Sydney. School of Life and Environmental Sciences and School of Medical Sciences. Marie Bashir Institute for Infectious Diseases and Biosecurity. Sydney, NSW, Australia.University of KwaZulu-Natal. College of Health Sciences. KwaZulu-Natal Research Innovation and Sequencing Platform. Durban, South Africa.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Universidade Estadual de Feira de Santana. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Universidade de Brasília. Brasília, DF, Brazil.Universidade Salvador. Salvador, BA, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Ezequiel Dias. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Flavivírus. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Hantaviroses e Rickettsioses. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Instituto Leônidas e Maria Deane. Laboratório de Ecologia de Doenças Transmissíveis na Amazônia. Manaus, AM, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Universidade Federal de Minas Gerais. Faculdade de Medicina Veterinária. Belo Horizonte, MG, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública do Estado do Paraná. Curitiba, PR, Brazil.Laboratório Central de Saúde Pública do Estado de Rondônia. Porto Velho, RO, Brazil.Laboratório Central de Saúde Pública do Estado do Amazonas. Manaus, AM, Brazil.Laboratório Central de Saúde Pública do Estado do Rio Grande do Norte. Natal, RN, Brazil.Laboratório Central de Saúde Pública do Estado de Mato Grosso. Cuiabá, MT, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Professor Gonçalo Moniz. Salvador, BA, Brazil.Laboratório Central de Saúde Pública Noel Nutels. Rio de Janeiro, RJ, Brazil.Instituto Adolfo Lutz. São Paulo, SP, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.Universidade de São Paulo. Instituto de Medicina Tropical. São Paulo, SP, Brazil.University of Oxford. Peter Medawar Building. Department of Zoology. Oxford, UK.Instituto Nacional de Enfermedades Virales Humanas Dr. Julio Maiztegui. Pergamino, Argentina.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Gorgas Memorial Institute for Health Studies. Panama, Panama.Instituto de Salud Pública de Chile. Santiago, Chile.Instituto de Diagnóstico y Referencia Epidemiológicos Dr. Manuel Martínez Báez. Ciudad de México, México.Instituto Nacional de Enfermedades Infecciosas Dr Carlos G Malbrán. Buenos Aires, Argentina.Ministerio de Salud Pública de Uruguay. Montevideo, Uruguay.Instituto Costarricense de Investigación y Enseñanza em Nutrición y Salud. Tres Ríos, Costa Rica.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Instituto Nacional de Investigacion en Salud Publica Dr Leopoldo Izquieta Pérez. Guayaquil, Ecuador.Universidade Federal de Pernambuco. Recife, PE, Brazil.Secretaria de Saúde do Estado de Minas Gerais. Belo Horizonte. MG, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Brasília, DF, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Universidade Federal de Ouro Preto. Ouro Preto, MG, Brazil.Fundação Hemocentro de Ribeirão Preto. Ribeirão Preto, SP, Brazil.Secretaria de Saúde de Feira de Santana. Feira de Santana, BA, Brazil.Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. Belo Horizonte, MG, Brazil.Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015–2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses
Diminishing benefits of urban living for children and adolescents’ growth and development
Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was <1.1 kg m–2 in the vast majority of countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified
NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics
Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data
NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics
Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
General and abdominal adiposity and hypertension in eight world regions: a pooled analysis of 837 population-based studies with 7·5 million participants
International audienceSummaryBackground Adiposity can be measured using BMI (which is based on weight and height) as well as indices of abdominal adiposity. We examined the association between BMI and waist-to-height ratio (WHtR) within and across populations of different world regions and quantified how well these two metrics discriminate between people with and without hypertension.MethodsWe used data from studies carried out from 1990 to 2023 on BMI, WHtR and hypertension in people aged 20–64 years in representative samples of the general population in eight world regions. We graphically compared the regional distributions of BMI and WHtR, and calculated Pearson’s correlation coefficients between BMI and WHtR within each region. We used mixed-effects linear regression to estimate the extent to which WHtR varies across regions at the same BMI. We graphically examined the prevalence of hypertension and the distribution of people who have hypertension both in relation to BMI and WHtR, and we assessed how closely BMI and WHtR discriminate between participants with and without hypertension using C-statistic and net reclassification improvement (NRI).FindingsThe correlation between BMI and WHtR ranged from 0·76 to 0·89 within different regions. After adjusting for age and BMI, mean WHtR was highest in south Asia for both sexes, followed by Latin America and the Caribbean and the region of central Asia, Middle East and north Africa. Mean WHtR was lowest in central and eastern Europe for both sexes, in the high-income western region for women, and in Oceania for men. Conversely, to achieve an equivalent WHtR, the BMI of the population of south Asia would need to be, on average, 2·79 kg/m² (95% CI 2·31–3·28) lower for women and 1·28 kg/m² (1·02–1·54) lower for men than in the high-income western region. In every region, hypertension prevalence increased with both BMI and WHtR. Models with either of these two adiposity metrics had virtually identical C-statistics and NRIs for every region and sex, with C-statistics ranging from 0·72 to 0·81 and NRIs ranging from 0·34 to 0·57 in different region and sex combinations. When both BMI and WHtR were used, performance improved only slightly compared with using either adiposity measure alone.InterpretationBMI can distinguish young and middle-aged adults with higher versus lower amounts of abdominal adiposity with moderate-to-high accuracy, and both BMI and WHtR distinguish people with or without hypertension. However, at the same BMI level, people in south Asia, Latin America and the Caribbean, and the region of central Asia, Middle East and north Africa, have higher WHtR than in the other regions