151 research outputs found

    Activities of carbon and nitrogen metabolism enzymes during germinating sorghum seeds and early seedlings growth

    Get PDF
    Carbon and nitrogen metabolism are regulated by complex mechanisms in order to optimize growth and development of plants and play a major role during germination and postgerminative growth. The objective of the current work was to establish the degree of changes in activities of key enzymes implicated in these two metabolism pathways during germination and post-germinative growth such as; glutamine synthetase, glutamate dehydrogenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, isocitrate dehydrogenase and aspartate aminotransferase. We have observed that during germination and seedlings development the most activities of nitrogen and carbon metabolism enzymes were correlated (nearly show similar kinetic changes) and influenced by their cellular environment and developmental stage. Therefore, higher activities of these enzymes were observed in the seed, root and shoot at early stages of the post-germinative phase could be effectively linked to the demand of de novo proteins to ensure a good development of seedlings

    Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence

    Get PDF
    Chalcones are among the leading bioactive flavonoids with a therapeutic potential implicated to an array of bioactivities investigated by a series of preclinical and clinical studies. In this article, different scientific databases were searched to retrieve studies depicting the biological activities of chalcones and their derivatives. This review comprehensively describes preclinical studies on chalcones and their derivatives describing their immense significance as antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, psychoactive, and neuroprotective agents. Besides, clinical trials revealed their use in the treatment of chronic venous insufficiency, skin conditions, and cancer. Bioavailability studies on chalcones and derivatives indicate possible hindrance and improvement in relation to its nutraceutical and pharmaceutical applications. Multifaceted and complex underlying mechanisms of chalcone actions demonstrated their ability to modulate a number of cancer cell lines, to inhibit a number of pathological microorganisms and parasites, and to control a number of signaling molecules and cascades related to disease modification. Clinical studies on chalcones revealed general absence of adverse effects besides reducing the clinical signs and symptoms with decent bioavailability. Further studies are needed to elucidate their structure activity, toxicity concerns, cellular basis of mode of action, and interactions with other molecules

    Contribution of DEAF1 Structural Domains to the Interaction with the Breast Cancer Oncogene LMO4

    Get PDF
    The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1

    World Addiction Medicine Reports : formation of the International Society of Addiction Medicine (ISAM) Global Expert Network (ISAM-GEN) and Its global surveys

    Get PDF
    Funding: All the infrastructure funding of this initiative is supported by the International Society of Addiction Medicine (ISAM). We will be open to fundraising for specific projects within the platform and future collaboration with external partners.Addiction medicine is a dynamic field that encompasses clinical practice and research in the context of societal, economic, and cultural factors at the local, national, regional, and global levels. This field has evolved profoundly during the past decades in terms of scopes and activities with the contribution of addiction medicine scientists and professionals globally. The dynamic nature of drug addiction at the global level has resulted in a crucial need for developing an international collaborative network of addiction societies, treatment programs and experts to monitor emerging national, regional, and global concerns. This protocol paper presents methodological details of running longitudinal surveys at national, regional, and global levels through the Global Expert Network of the International Society of Addiction Medicine (ISAM-GEN). The initial formation of the network with a recruitment phase and a round of snowball sampling provided 354 experts from 78 countries across the globe. In addition, 43 national/regional addiction societies/associations are also included in the database. The surveys will be developed by global experts in addiction medicine on treatment services, service coverage, co-occurring disorders, treatment standards and barriers, emerging addictions and/or dynamic changes in treatment needs worldwide. Survey participants in categories of (1) addiction societies/associations, (2) addiction treatment programs, (3) addiction experts/clinicians and (4) related stakeholders will respond to these global longitudinal surveys. The results will be analyzed and cross-examined with available data and peer-reviewed for publication.Peer reviewe

    Probing the Functional Impact of Sequence Variation on p53-DNA Interactions Using a Novel Microsphere Assay for Protein-DNA Binding with Human Cell Extracts

    Get PDF
    The p53 tumor suppressor regulates its target genes through sequence-specific binding to DNA response elements (REs). Although numerous p53 REs are established, the thousands more identified by bioinformatics are not easily subjected to comparative functional evaluation. To examine the relationship between RE sequence variation—including polymorphisms—and p53 binding, we have developed a multiplex format microsphere assay of protein-DNA binding (MAPD) for p53 in nuclear extracts. Using MAPD we measured sequence-specific p53 binding of doxorubicin-activated or transiently expressed p53 to REs from established p53 target genes and p53 consensus REs. To assess the sensitivity and scalability of the assay, we tested 16 variants of the p21 target sequence and a 62-multiplex set of single nucleotide (nt) variants of the p53 consensus sequence and found many changes in p53 binding that are not captured by current computational binding models. A group of eight single nucleotide polymorphisms (SNPs) was examined and binding profiles closely matched transactivation capability tested in luciferase constructs. The in vitro binding characteristics of p53 in nuclear extracts recapitulated the cellular in vivo transactivation capabilities for eight well-established human REs measured by luciferase assay. Using a set of 26 bona fide REs, we observed distinct binding patterns characteristic of transiently expressed wild type and mutant p53s. This microsphere assay system utilizes biologically meaningful cell extracts in a multiplexed, quantitative, in vitro format that provides a powerful experimental tool for elucidating the functional impact of sequence polymorphism and protein variation on protein/DNA binding in transcriptional networks

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    Comparative analysis of co-processed starches prepared by three different methods

    Get PDF
    Co-processing is currently of interest in the generation of high-functionality excipients for tablet formulation. In the present study, comparative analysis of the powder and tableting properties of three co-processed starches prepared by three different methods was carried out. The co-processed excipients consisting of maize starch (90%), acacia gum (7.5%) and colloidal silicon dioxide (2.5%) were prepared by co-dispersion (SAS-CD), co-fusion (SAS-CF) and co-granulation (SAS-CG). Powder properties of each co-processed excipient were characterized by measuring particle size, flow indices, particle density, dilution potential and lubricant sensitivity ratio. Heckel and Walker models were used to evaluate the compaction behaviour of the three co-processed starches. Tablets were produced with paracetamol as the model drug by direct compression on an eccentric Tablet Press fitted with 12 mm flat-faced punches and compressed at 216 MPa. The tablets were stored at room temperature for 24 h prior to evaluation. The results revealed that co-granulated co-processed excipient (SAS-CG) gave relatively better properties in terms of flow, compressibility, dilution potential, deformation, disintegration, crushing strength and friability. This study has shown that the method of co-processing influences the powder and tableting properties of the co-processed excipient

    GPR97 triggers inflammatory processes in human neutrophils via a macromolecular complex upstream of PAR2 activation

    Get PDF
    Neutrophils play essential anti-microbial and inflammatory roles in host defense, however, their activities require tight regulation as dysfunction often leads to detrimental inflammatory and autoimmune diseases. Here we show that the adhesion molecule GPR97 allosterically activates CD177-associated membrane proteinase 3 (mPR3), and in conjugation with several protein interaction partners leads to neutrophil activation in humans. Crystallographic and deletion analysis of the GPR97 extracellular region identified two independent mPR3-binding domains. Mechanistically, the efficient binding and activation of mPR3 by GPR97 requires the macromolecular CD177/GPR97/PAR2/CD16b complex and induces the activation of PAR2, a G protein-coupled receptor known for its function in inflammation. Triggering PAR2 by the upstream complex leads to strong inflammatory activation, prompting anti-microbial activities and endothelial dysfunction. The role of the complex in pathologic inflammation is underscored by the finding that both GPR97 and mPR3 are upregulated on the surface of disease-associated neutrophils. In summary, we identify a PAR2 activation mechanism that directs neutrophil activation, and thus inflammation. The PR3/CD177/GPR97/PAR2/CD16b protein complex, therefore, represents a potential therapeutic target for neutrophil-mediated inflammatory diseases

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear
    corecore