11 research outputs found

    Geochemistry and Tectonic Setting of Neoproterozoic Rocks from the Arabian-Nubian Shield: Emphasis on the Eastern Desert of Egypt

    Get PDF
    The Neoproterozoic rocks of the Eastern Desert (ED) of Egypt represent the northwestern part of the Arabian-Nubian Shield (ANS), which was formed during the Pan-African orogenic cycle (950–450). Geochemistry of the different rock units has clarified their compositional variations, tectonic settings, and origins. The ages of these rock units were reported to predict the crustal evolution of the ANS. Island arc volcanic rocks and ophiolitic sequences formed between 700 and 800 Ma, and then, they were obducted in the earlier stage of the Pan-African orogeny. The post-collision stage was characterized by the emplacement of large masses of Dokhan volcanics (610–560 Ma) and shallow level A-type granites (610–550 Ma). Neoproterozoic ophiolites fall geochemically and tectonically into two separate groups: MORB-like ophiolites and SSZ ophiolites of fore-arc tectonic setting. Intra-oceanic island arcs and related inter-arc volcaniclastic sediments are followed by the incorporations of ophiolite fragments into the volcaniclastic matrix to form “ophiolitic mĂ©lange” through tectonic and/or concurrent sedimentary and tectonic processes. The “gneissic domes” that are metamorphic core complexes were previously interpreted to represent a pre-Neoproterozoic. However, recent age data argued that the ED gneissic rocks are juvenile in origin and Neoproterozoic. Granitoid rocks in the ED include older and younger types. Most of the older granitoids are of I-type character, displaying metaluminous, calcalkaline geochemical characteristics plot in the area of volcanic arc granites (VAG), whereas most of the younger granitoids are mainly alkaline of A-type granites and of within-plate tectonic setting (WPG). Nonmetamorphosed Dokhan volcanics and Hammamat molasse sediments formed during the final post-collisional phases

    An Overview on the Classification and Tectonic Setting of Neoproterozoic Granites of the Nubian Shield, Eastern Desert, Egypt

    Get PDF
    Granites constitute the main rock components of the Earth’s continental crust, which suggested to be formed in variable geodynamics environments. The different types of granitic rocks, their compositional characteristics, tectonic settings and magma sources are outlined. Mineralogical classification of granites includes four rock types: tonalites, granodiorites, granite (monzogranite and syenogranites) and alkali-feldspar granites. Alphabetical classification subdivided granites into: I-type, S-type, A-type and M-type granites. Moreover, formation of granitic magmas requires distinctive geodynamic settings such as: volcanic arc granite (Cordilleran); collision-related granites (leucogranites); intra-plate and ocean ridge granites. The Eastern Desert of Egypt (ED) forms the northern part of Nubian Shield. Both older and younger granites are widely exposed in the ED. Old granites (OG) comprise tonalites and granodiorites of syn- to late-orogenic granitoid assemblages. They are calcalkaline, I-type, metaluminous and display island arc tectonic setting. Younger granites (YG) on the other hand, include granites, alkali-feldspar granites and minor granodiorites. They are of I- and A-type granites and of post-orogenic to anorogenic tectonic settings. The majority of the YG are alkaline, A-type granite and of within-plate tectonic setting (WPG). The A-type granites are subdivided into: A2-type postorogenic granites and A1-type anorogenic granites. Granite magma genesis involves: (a) fractional crystallization of mafic mantle-derived magmas; (b) anatexis or assimilation of old, upper crustal rocks (c) re - melting of juvenile mafic mantle – derived rocks underplating the continental crust. Generally, older I-type granitoids were interpreted to result from melting of mafic crust and dated at approximately 760–650 Ma, whereas younger granites suggested to be formed as a result of partial melting of a juvenile Neoproterozoic mantle source. Moreover, they formed from anatectic melts of various crustal sources that emplaced between 600 and 475 Ma

    Mechanisms and processes of stratal disruption and mixing in the development of mélanges and broken formations: Redefining and classifying mélanges

    Full text link

    New chondrite from Libya

    No full text
    On Saturday, 21 of May, 2006, a fall was observed and the stony meteorite was found in a small crater on an apple farm at Werdama village, near Al Beda town in Libya. Based on preliminary examinations, the authors described the meteorite as an ordinary chondrite. Further research aiming at full characteristics, classification and registration of the meteorite is in progress
    corecore