773 research outputs found

    Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities

    Full text link
    The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corresponding to the maximum oscillation power {\nu}_{max}, the maximal amplitude A_{max}, the asymptotic period spacing of g-modes, and different acoustic radii. We discuss the signature of rotation-induced mixing on the global asteroseismic quantities, that can be detected observationally. Thermohaline mixing whose effects can be identified by spectroscopic studies cannot be caracterized with the global seismic parameters studied here. But it is not excluded that individual mode frequencies or other well chosen asteroseismic quantities might help constraining this mixing.Comment: 15 pages, 11 figures, accepted for publication in A&

    Apparent Age Spreads in Clusters and the Role of Stellar Rotation

    Get PDF
    We use the Geneva Syclist isochrone models that include the effects of stellar rotation to investigate the role that rotation has on the resulting colour-magnitude diagram (CMD) of young and intermediate age clusters. We find that if a distribution of rotation velocities exists within the clusters, rotating stars will remain on the main sequence (MS) for longer, appearing to be younger than non-rotating stars within the same cluster. This results in an extended main sequence turn-off (eMSTO) that appears at young ages (∌30\sim30~Myr) and lasts beyond 1~Gyr. If this eMSTO is interpreted as an age spread, the resulting age spread is proportional to the age of the cluster, i.e. young clusters (<100<100~Myr) appear to have small age spreads (10s of Myr) whereas older clusters (∌1\sim1~Gyr) appear to have much larger spreads, up to a few hundred Myr. We compare the predicted spreads for a sample of rotation rates to observations of young and intermediate age clusters, and find a strong correlation between the measured 'age spread' and the age of the cluster, in good agreement with models of stellar rotation. This suggests that the 'age spreads' reported in the literature may simply be the result of a distribution of stellar rotation velocities within clusters

    Apparent age spreads in clusters and the role of stellar rotation

    Get PDF
    We use the Geneva syclist isochrone models that include the effects of stellar rotation to investigate the role that rotation has on the resulting colour-magnitude diagram of young and intermediate age clusters. We find that if a distribution of rotation velocities exists within the clusters, rotating stars will remain on the main sequence for longer, appearing to be younger than non-rotating stars within the same cluster. This results in an extended main sequence turn-off (eMSTO) that appears at young ages (∌30Myr) and lasts beyond 1Gyr. If this eMSTO is interpreted as an age spread, the resulting age spread is proportional to the age of the cluster, i.e. young clusters (<100Myr) appear to have small age spreads (tens of Myr) whereas older clusters (∌1Gyr) appear to have much large spreads, up to a few hundred Myr. We compare the predicted spreads for a sample of rotation rates to observations of young and intermediate age clusters, and find a strong correlation between the measured ‘age spread' and the age of the cluster, in good agreement with models of stellar rotation. This suggests that the ‘age spreads' reported in the literature may simply be the result of a distribution of stellar rotation velocities within cluster

    Australian climate extremes in the 21st century according to a regional climate model ensemble: Implications for health and agriculture

    Get PDF
    The negative impacts of climate extremes on socioeconomic sectors in Australia makes understanding their behaviour under future climate change necessary for regional planning. Providing robust and actionable climate information at regional scales relies on the downscaling of global climate model data and its translation into impact-relevant information. The New South Wales/Australian Capital Territory Regional Climate Modelling (NARCliM) project contains downscaled climate data over all of Australia at a 50 km resolution, with ensembles of simulations for the recent past (1990–2009), near future (2020–2039) and far future (2060–2079). Here we calculate and examine sector-relevant indices of climate extremes recommended by the Expert Team on Sector-specific Climate Indices (ET-SCI). We demonstrate the utility of NARCliM and the ET-SCI indices in understanding how future changes in climate extremes could impact aspects of the health and agricultural sectors in Australia. Consistent with previous climate projections, our results indicate that increases in heat and drought related extremes throughout the 21st century will occur. In the far future, maximum day time temperatures are projected to increase by up to 3.5 °C depending on season and location. The number of heatwaves and the duration of the most intense heatwaves will increase significantly in the near and far future, with greater increases in the north than south. All capital cities are projected to experience at least a tripling of heatwave days each year by the far future, compared to the recent past. Applying published heat-health relationships to projected changes in temperature shows that increases in mortality due to high temperatures for all cities examined would occur if projected future climates occurred today. Drought and the number of days above 30 °C are also projected to increase over the major wheat-growing regions of the country, particularly during spring when sensitivity of wheat to heat stress is greatest. Assuming no adaptation or acclimatisation, published statistical relationships between drought and national wheat yield suggest that national yields will have a less than one quarter chance of exceeding the annual historical average under far future precipitation change (excluding impacts of future temperature change and CO2 fertilization). The NARCliM data examined here, along with the ET-SCI indices calculated, provide a powerful and publicly available dataset for regional planning against future changes in climate extremes

    Stellar mass and age determinations - I. Grids of stellar models from Z=0.006 to 0.04 and M=0.5 to 3.5 Msun

    Full text link
    We present dense grids of stellar models suitable for comparison with observable quantities measured with great precision, such as those derived from binary systems or planet-hosting stars. We computed new Geneva models without rotation at metallicities Z=0.006, 0.01, 0.014, 0.02, 0.03 and 0.04 (i.e. [Fe/H] from -0.33 to +0.54) and with mass in small steps from 0.5 to 3.5 Msun. Great care was taken in the procedure for interpolating between tracks in order to compute isochrones. Several properties of our grids are presented as a function of stellar mass and metallicity. Those include surface properties in the Hertzsprung-Russell diagram, internal properties including mean stellar density, sizes of the convective cores, and global asteroseismic properties. We checked our interpolation procedure and compared interpolated tracks with computed tracks. The deviations are less than 1% in radius and effective temperatures for most of the cases considered. We also checked that the present isochrones provide nice fits to four couples of observed detached binaries and to the observed sequences of the open clusters NGC 3532 and M67. Including atomic diffusion in our models with M<1.1 Msun leads to variations in the surface abundances that should be taken into account when comparing with observational data of stars with measured metallicities. For that purpose, iso-Zsurf lines are computed. These can be requested for download from a dedicated web page together with tracks at masses and metallicities within the limits covered by the grids. The validity of the relations linking Z and FeH is also re-assessed in light of the surface abundance variations in low-mass stars.Comment: Accepted for publication in A&

    Extended Main Sequence Turnoffs in Open Clusters as Seen by Gaia: I. NGC 2818 and the Role of Stellar Rotation

    Get PDF
    We present an analysis of the relatively low mass (∌2400\sim2400~M⊙_{\odot}), ∌800\sim800~Myr, Galactic open cluster, NGC~2818, using Gaia DR2 results combined with VLT/FLAMES spectroscopy. Using Gaia DR2 proper motions and parallax measurements we are able to select a clean sample of cluster members. This cluster displays a clear extended main sequence turn-off (eMSTO), a phenomenon previously studied mainly in young and intermediate age massive clusters in the Magellanic clouds. The main sequence of NGC~2818 is extremely narrow, with a width of ∌0.01\sim0.01 magnitudes (GBP−_{\rm BP} - GRP_{\rm RP}), suggesting very low levels of differential extinction. Using VLT/FLAMES spectroscopy of 60 cluster members to measure the rotational velocity of the stars (Vsini) we find that stars on the red side of the eMSTO have high Vsini (>160>160~km/s) while stars on the blue side have low Vsini (<160<160~km/s), in agreement with model predictions. The cluster also follows the previously discovered trend between the age of the cluster and the extent of the eMSTO. We conclude that stellar rotation is the likely cause of the eMSTO phenomenon

    Supernovae from rotating stars

    Full text link
    The present paper discusses the main physical effects produced by stellar rotation on presupernovae, as well as observations which confirm these effects and their consequences for presupernova models. Rotation critically influences the mass of the exploding cores, the mass and chemical composition of the envelopes and the types of supernovae, as well as the properties of the remnants and the chemical yields. In the formation of gamma-ray bursts, rotation and the properties of rotating stars appear as the key factor. In binaries, the interaction between axial rotation and tidal effects often leads to interesting and unexpected results. Rotation plays a key role in shaping the evolution and nucleosynthesis in massive stars with very low metallicities (metallicity below about the Small Magellanic Cloud metallicity down to Population III stars). At solar and higher metallicities, the effects of rotation compete with those of stellar winds. In close binaries, the synchronisation process can lock the star at a high rotation rate despite strong mass loss and thus both effects, rotation and stellar winds, have a strong impact. In conclusion, rotation is a key physical ingredient of the stellar models and of presupernova stages, and the evolution both of single stars and close binaries. Moreover, important effects are expected along the whole cosmic history.Comment: 36 pages, 15 figures, published in Handbook of Supernovae, A.W. Alsabti and P. Murdin (eds), Springe

    COVID-19 outbreak at a reception centre for asylum seekers in Espoo, Finland

    Get PDF
    Publisher Copyright: © 2021Background shared accommodation may increase the risk of SARS-CoV-2 transmission. In April 2020, an increasing number of asylum seekers at a reception centre in Espoo, Finland presented with COVID-19 despite earlier implementation of preventive measures. We decided to screen the entire population of the centre for SARS-CoV-2. Methods we offered nasopharyngeal swab collection and SARS-CoV-2 real-time polymerase chain reaction (RT-PCR) analysis to the centre's clients. Symptoms were recorded at the time of diagnostic sample collection using electronic forms and followed up for two weeks through phone interviews and a review of medical records. Findings 260 clients were screened. Of them, 96 (37%) were found positive for SARS-CoV-2 and isolated. The high attack rate prompted the local public health authority to set the other clients in quarantine for 14 days to prevent further spread. Of the positive cases, 61 (64%) reported having had symptoms at the time of the screening or one week prior. Of the 35 initially asymptomatic individuals, 12 developed symptoms during follow-up, while 23 (or 18% of all screened SARS-CoV-2 positive clients) remained asymptomatic. No widespread transmission of COVID-19 was detected after the quarantine was lifted. Interpretation in this large COVID-19 outbreak, voluntary mass screening provided valuable information about its extent and helped guide the public health response. Comprehensive quarantine and isolation measures were likely instrumental in containing the outbreak. Funding Finnish Institution for Health and Welfare, Finnish Immigration Agency, City of EspooPeer reviewe

    Consensus-based care recommendations for congenital and childhood-onset myotonic dystrophy type 1

    Get PDF
    Purpose of reviewMyotonic dystrophy type 1 is a multisystemic disorder caused by a noncoding triplet repeat. The age of onset is variable across the lifespan, but in its most severe form, the symptoms appear at birth (congenital myotonic dystrophy) or in the pediatric age range (childhood-onset myotonic dystrophy). These children have a range of disabilities that reduce the lifespan and cause significant morbidity. Currently, there are no agreed upon recommendations for caring for these children.Recent findingsThe Myotonic Dystrophy Foundation recruited 11 international clinicians who are experienced with congenital and childhood-onset myotonic dystrophy to create consensus-based care recommendations. The experts used a 2-step methodology using elements of the single text procedure and nominal group technique. Completion of this process has led to the development of clinical care recommendations for this population.SummaryChildren with myotonic dystrophy often require monitoring and interventions to improve the lifespan and quality of life. The resulting recommendations are intended to standardize and improve the care of children with myotonic dystrophy
    • 

    corecore