917 research outputs found

    Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?

    Get PDF
    Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel

    Differential binding studies applying functional protein microarrays and surface plasmon resonance

    Get PDF
    A variety of different in vivo and in vitro technologies provide comprehensive insights in protein-protein interaction networks. Here we demonstrate a novel approach to analyze, verify and quantify putative interactions between two members of the S100 protein family and 80 recombinant proteins derived from a proteome-wide protein expression library. Surface plasmon resonance (SPR) using Biacore technology and functional protein microarrays were used as two independent methods to study protein-protein interactions. With this combined approach we were able to detect nine calcium-dependent interactions between Arg-Gly-Ser-(RGS)-His6 tagged proteins derived from the library and GST-tagged S100B and S100A6, respectively. For the protein microarray affinity-purified proteins from the expression library were spotted onto modified glass slides and probed with the S100 proteins. SPR experiments were performed in the same setup and in a vice-versa approach reversing analytes and ligands to determine distinct association and dissociation patterns of each positive interaction. Besides already known interaction partners, several novel binders were found independently with both detection methods, albeit analogous immobilization strategies had to be applied in both assays

    Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains.

    No full text
    A proteome approach, combining high-resolution two-dimensional electrophoresis (2-DE) with mass spectrometry, was used to compare the cellular protein composition of two virulent strains of Mycobacterium tuberculosis with two attenuated strains of Mycobacterium bovis Bacillus Calmette-Guerin (BCG), in order to identify unique proteins of these strains. Emphasis was given to the identification of M. tuberculosis specific proteins, because we consider these proteins to represent putative virulence factors and interesting candidates for vaccination and diagnosis of tuberculosis. The genome of M. tuberculosis strain H37Rv comprises nearly 4000 predicted open reading frames. In contrast, the separation of proteins from whole mycobacterial cells by 2-DE resulted in silver-stained patterns comprising about 1800 distinct protein spots. Amongst these, 96 spots were exclusively detected either in the virulent (56 spots) or in the attenuated (40 spots) mycobacterial strains. Fifty-three of these spots were analyzed by mass spectrometry, of which 41 were identified, including 32 M. tuberculosis specific spots. Twelve M. tuberculosis specific spots were identified as proteins, encoded by genes previously reported to be deleted in M. bovis BCG. The remaining 20 spots unique for M. tuberculosis were identified as proteins encoded by genes that are not known to be missing in M. bovis BCG

    Resting-state alterations in behavioral variant frontotemporal dementia are related to the distribution of monoamine and GABA neurotransmitter systems

    Get PDF
    Aside to clinical changes, behavioral variant frontotemporal dementia (bvFTD) is characterized by progressive structural and functional alterations in frontal and temporal regions. We examined if there is a selective vulnerability of specific neurotransmitter systems in bvFTD by evaluating the link between disease-related functional alterations and the spatial distribution of specific neurotransmitter systems and their underlying gene expression levels.Maps of fractional amplitude of low frequency fluctuations (fALFF) were derived as a measure of local activity from resting-state functional magnetic resonance imaging for 52 bvFTD patients (mean age = 61.5 ± 10.0 years; 14 female) and 22 healthy controls (HC) (mean age = 63.6 ± 11.9 years; 13 female). We tested if alterations of fALFF in patients co-localize with the non-pathological distribution of specific neurotransmitter systems and their coding mRNA gene expression. Further, we evaluated if the strength of co-localization is associated with the observed clinical symptoms.Patients displayed significantly reduced fALFF in fronto-temporal and fronto-parietal regions. These alterations co-localized with the distribution of serotonin (5-HT1b, 5-HT2a), dopamine (D2), and γ-aminobutyric acid (GABAa) receptors, the norepinephrine transporter (NET), and their encoding mRNA gene expression. The strength of co-localization with D2 and NET was associated with cognitive symptoms and disease severity of bvFTD.Local brain functional activity reductions in bvFTD followed the distribution of specific neurotransmitter systems indicating a selective vulnerability. These findings provide novel insight into the disease mechanisms underlying functional alterations. Our data-driven method opens the road to generate new hypotheses for pharmacological interventions in neurodegenerative diseases even beyond bvFTD

    The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroimaging researchers have developed rigorous community data and metadata standards that encourage meta-analysis as a method for establishing robust and meaningful convergence of knowledge of human brain structure and function. Capitalizing on these standards, the BrainMap project offers databases, software applications, and other associated tools for supporting and promoting quantitative coordinate-based meta-analysis of the structural and functional neuroimaging literature.</p> <p>Findings</p> <p>In this report, we describe recent technical updates to the project and provide an educational description for performing meta-analyses in the BrainMap environment.</p> <p>Conclusions</p> <p>The BrainMap project will continue to evolve in response to the meta-analytic needs of biomedical researchers in the structural and functional neuroimaging communities. Future work on the BrainMap project regarding software and hardware advances are also discussed.</p

    Exploring the Partonic Structure of Hadrons through the Drell-Yan Process

    Full text link
    The Drell-Yan process is a standard tool for probing the partonic structure of hadrons. Since the process proceeds through a quark-antiquark annihilation, Drell-Yan scattering possesses a unique ability to selectively probe sea distributions. This review examines the application of Drell-Yan scattering to elucidating the flavor asymmetry of the nucleon's sea and nuclear modifications to the sea quark distributions in unpolarized scattering. Polarized beams and targets add an exciting new dimension to Drell-Yan scattering. In particular, the two initial-state hadrons give Drell-Yan sensitivity to chirally-odd transversity distributions.Comment: 23 pages, 9 figures, to appear in J. Phys. G, resubmission corrects typographical error

    Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material

    Get PDF
    Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species

    Dynamic stabilization zone structure of jet diffusion flames from liftoff to blowout

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76733/1/AIAA-23512-341.pd

    Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei

    Get PDF
    We review and summarize recent theoretical and experimental work on electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with surrounding nuclear spins. This topic is of particular interest with respect to several proposals for quantum information processing in solid state systems. Specifically, we investigate the hyperfine interaction of an electron spin confined in a quantum dot in an s-type conduction band with the nuclear spins in the dot. This interaction is proportional to the square modulus of the electron wave function at the location of each nucleus leading to an inhomogeneous coupling, i.e. nuclei in different locations are coupled with different strength. In the case of an initially fully polarized nuclear spin system an exact analytical solution for the spin dynamics can be found. For not completely polarized nuclei, approximation-free results can only be obtained numerically in sufficiently small systems. We compare these exact results with findings from several approximation strategies.Comment: 26 pages, 9 figures. Topical Review to appear in J. Phys.: Condens. Matte

    MAC and baseband processors for RF-MIMO WLAN

    Get PDF
    The article describes hardware solutions for the IEEE 802.11 medium access control (MAC) layer and IEEE 802.11a digital baseband in an RF-MIMO WLAN transceiver that performs the signal combining in the analogue domain. Architecture and implementation details of the MAC processor including a hardware accelerator and a 16-bit MACphysical layer (PHY) interface are presented. The proposed hardware solution is tested and verified using a PHY link emulator. Architecture, design, implementation, and test of a reconfigurable digital baseband processor are described too. Description includes the baseband algorithms (the main blocks being MIMO channel estimation and Tx-Rx analogue beamforming), their FPGA-based implementation, baseband printed-circuit-board, and real-time test
    corecore