79 research outputs found

    Seasonal and habitat-based variations in vertical export of biogenic sea-ice proxies in Hudson Bay

    Get PDF
    Despite their wide use in past sea-ice reconstructions, the seasonal, habitat and species-based sources of sedimentary sea-ice proxies are poorly understood. Here, we conduct direct observations of the community composition of diatoms, dinoflagellate cysts and highly branched isoprenoid lipids within the sea ice, water column, sediment traps and sediment surface in the Belcher Islands Archipelago, Hudson Bay throughout spring 2019. We find that Arctic diatom and dinoflagellate cysts species commonly used as sea-ice proxies appear to be only indirectly linked to sea-ice conditions, and that the sediment assemblages of these groups overrepresent summertime pelagic blooms. Species contributing to the diverse sea-ice diatom communities are rare in the sediment. Dinoflagellate cysts form a typical Arctic assemblage in the sediment, although they are virtually absent in the sea ice and water column in spring. We also find that certain highly branched isoprenoid lipids that were previously considered indicators of open water, can be produced in sea-ice. We conclude that contextual knowledge and a multiproxy approach are necessary in reconstruction, encouraging further studies on the sources and controls of sea-ice proxy production in different geographic areas

    Floating Ice-Algal Aggregates below Melting Arctic Sea Ice

    Get PDF
    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum yea

    Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 40850, doi:10.1038/srep40850.The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.This study was supported by the Centre for Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute, the Ministry of Climate and Environment, Norway, the Research Council of Norway (projects Boom or Bust no. 244646, STASIS no. 221961, CORESAT no. 222681, CIRFA no. 237906 and AMOS CeO no. 223254), and the Ministry of Foreign Affairs, Norway (project ID Arctic), the ICE-ARC program of the European Union 7th Framework Program (grant number 603887), the Polish-Norwegian Research Program operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract Pol-Nor/197511/40/2013, CDOM-HEAT, and the Ocean Acidification Flagship program within the FRAM- High North Research Centre for Climate and the Environment, Norway

    Impact of sea ice on the retrieval of water-leaving reflectance, chlorophyll a concentration and inherent optical properties from satellite ocean color data

    No full text
    Two physical phenomena by which satellite remotely sensed ocean color data are contaminated by sea ice at high latitudes are described through simulations and observations: (1) the adjacency effect that occurs along sea ice margins and (2) the sub-pixel contamination by a small amount of sea ice within an ocean pixel. The signal at the top of the atmosphere (TOA) was simulated using the 6S radiative transfer code that allows modeling of the adjacency effect for various types of sea ice surrounding an open water area. In situ sea ice reflectance spectra used in the simulations were measured prior to and during the melt period as part of the 2004 Canadian Arctic Shelf Exchange Study (CASES). For sub-pixel contamination, the TOA signal was simulated for various surface reflectances obtained by linear mixture of both sea ice and water-leaving reflectances (rho(w)). The standard atmospheric correction algorithm was then applied to the simulated TOA spectra to retrieve rho(w) spectra from which chlorophyll a concentrations (CHL) and inherent optical properties (IOps) were derived. The adjacency effect was associated with large errors (> 0.002) in the retrieval of rho(w) as far as 24 km from an ice edge in the blue part of the spectrum (443 nm). Therefore, for moderate to high CHL (> 0.5 mg m(-3)), any pixel located within a distance of similar to 10-20 km from the ice edge were unreliable. It was also found necessary to consider the adjacency effect when the total absorption coefficient (a(t)) was to be retrieved using a semi-analytical algorithm. a(t)(443) was underestimated by more than 35% at a distance of 20 km from an ice edge for CHL > 0.5 mg m(-3). The effect on the retrieval of the particle backscattering coefficient (b(bp)) was important only for clear waters (CHL similar to 0.05 mg m(-3)). In contrast, sub-pixel contamination by a small amount of sea ice produced systematic underestimation of rho(w) in the blue because of incorrect interpretation of enhanced reflectance in the near infrared that is attributed to higher concentrations of atmospheric aerosols. In general, sub-pixel contamination was found to result in overestimations of CHL and at, and underestimations of bbp. A simple method was proposed to flag pixels contaminated by adjacency effect. (c) 2007 Elsevier Inc. All rights reserved
    corecore