1,329 research outputs found

    On the Birth of Isolas

    Get PDF
    Isolas are isolated, closed curves of solution branches of nonlinear problems. They have been observed to occur in the buckling of elastic shells, the equilibrium states of chemical reactors and other problems. In this paper we present a theory to describe analytically the structure of a class of isolas. Specifically, we consider isolas that shrink to a point as a parameter τ of the problem, approaches a critical value τ_0. The point is referred to as an isola center. Equations that characterize the isola centers are given. Then solutions are constructed in a neighborhood of the isola centers by perturbation expansions in a small parameter ε that is proportional to (τ-τo), with a appropriately determined. The theory is applied to a chemical reactor problem

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift

    Get PDF
    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory

    Chronic non-specific low back pain - sub-groups or a single mechanism?

    Get PDF
    Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions for chronic non-specific low back pain indicate limited effectiveness for most commonly applied interventions and approaches. Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of effectiveness is at odds with their clinical experience of managing patients with back pain. A common explanation for this discrepancy is the perceived heterogeneity of patients with chronic non-specific low back pain. It is felt that the effects of treatment may be diluted by the application of a single intervention to a complex, heterogeneous group with diverse treatment needs. This argument presupposes that current treatment is effective when applied to the correct patient. An alternative perspective is that the clinical trials are correct and current treatments have limited efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important that the sub-grouping paradigm is closely examined. This paper argues that there are numerous problems with the sub-grouping approach and that it may not be an important reason for the disappointing results of clinical trials. We propose instead that current treatment may be ineffective because it has been misdirected. Recent evidence that demonstrates changes within the brain in chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of cortical reorganisation and degeneration. This perspective offers interesting insights into the chronic low back pain experience and suggests alternative models of intervention. Summary: The disappointing results of clinical research are commonly explained by the failure of researchers to adequately attend to sub-grouping of the chronic non-specific low back pain population. Alternatively, current approaches may be ineffective and clinicians and researchers may need to radically rethink the nature of the problem and how it should best be managed

    Mapping of the Disease Locus and Identification of ADAMTS10 As a Candidate Gene in a Canine Model of Primary Open Angle Glaucoma

    Get PDF
    Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide, with elevated intraocular pressure as an important risk factor. Increased resistance to outflow of aqueous humor through the trabecular meshwork causes elevated intraocular pressure, but the specific mechanisms are unknown. In this study, we used genome-wide SNP arrays to map the disease gene in a colony of Beagle dogs with inherited POAG to within a single 4 Mb locus on canine chromosome 20. The Beagle POAG locus is syntenic to a previously mapped human quantitative trait locus for intraocular pressure on human chromosome 19. Sequence capture and next-generation sequencing of the entire canine POAG locus revealed a total of 2,692 SNPs segregating with disease. Of the disease-segregating SNPs, 54 were within exons, 8 of which result in amino acid substitutions. The strongest candidate variant causes a glycine to arginine substitution in a highly conserved region of the metalloproteinase ADAMTS10. Western blotting revealed ADAMTS10 protein is preferentially expressed in the trabecular meshwork, supporting an effect of the variant specific to aqueous humor outflow. The Gly661Arg variant in ADAMTS10 found in the POAG Beagles suggests that altered processing of extracellular matrix and/or defects in microfibril structure or function may be involved in raising intraocular pressure, offering specific biochemical targets for future research and treatment strategies

    The Cell Signaling Adaptor Protein EPS-8 Is Essential for C. elegans Epidermal Elongation and Interacts with the Ankyrin Repeat Protein VAB-19

    Get PDF
    The epidermal cells of the C. elegans embryo undergo coordinated cell shape changes that result in the morphogenetic process of elongation. The cytoskeletal ankyrin repeat protein VAB-19 is required for cell shape changes and localizes to cell-matrix attachment structures. The molecular functions of VAB-19 in this process are obscure, as no previous interactors for VAB-19 have been described.In screens for VAB-19 binding proteins we identified the signaling adaptor EPS-8. Within C. elegans epidermal cells, EPS-8 and VAB-19 colocalize at cell-matrix attachment structures. The central domain of EPS-8 is necessary and sufficient for its interaction with VAB-19. eps-8 null mutants, like vab-19 mutants, are defective in epidermal elongation and in epidermal-muscle attachment. The eps-8 locus encodes two isoforms, EPS-8A and EPS-8B, that appear to act redundantly in epidermal elongation. The function of EPS-8 in epidermal development involves its N-terminal PTB and central domains, and is independent of its C-terminal SH3 and actin-binding domains. VAB-19 appears to act earlier in the biogenesis of attachment structures and may recruit EPS-8 to these structures.EPS-8 and VAB-19 define a novel pathway acting at cell-matrix attachments to regulate epithelial cell shape. This is the first report of a role for EPS-8 proteins in cell-matrix attachments. The existence of EPS-8B-like isoforms in Drosophila suggests this function of EPS-8 proteins could be conserved among other organisms

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Female Drosophila melanogaster Gene Expression and Mate Choice: The X Chromosome Harbours Candidate Genes Underlying Sexual Isolation

    Get PDF
    Background: The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown. Methods and Findings: We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean) versus less (Cosmopolitan strain) preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations. Conclusion: Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized

    Capabilities, Performance, and Status of the SOFIA Science Instrument Suite

    Get PDF
    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne observatory, carrying a 2.5 m telescope onboard a heavily modified Boeing 747SP aircraft. SOFIA is optimized for operation at infrared wavelengths, much of which is obscured for ground-based observatories by atmospheric water vapor. The SOFIA science instrument complement consists of seven instruments: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), GREAT (German Receiver for Astronomy at Terahertz Frequencies), HIPO (High-speed Imaging Photometer for Occultations), FLITECAM (First Light Infrared Test Experiment CAMera), FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), EXES (Echelon-Cross-Echelle Spectrograph), and HAWC (High-resolution Airborne Wideband Camera). FORCAST is a 540 m imager with grism spectroscopy, developed at Cornell University. GREAT is a heterodyne spectrometer providing high-resolution spectroscopy in several bands from 60240 m, developed at the Max Planck Institute for Radio Astronomy. HIPO is a 0.31.1 m imager, developed at Lowell Observatory. FLITECAM is a 15 m wide-field imager with grism spectroscopy, developed at UCLA. FIFI-LS is a 42210 m integral field imaging grating spectrometer, developed at the University of Stuttgart. EXES is a 528 m high-resolution spectrograph, developed at UC Davis and NASA ARC. HAWC is a 50240 m imager, developed at the University of Chicago, and undergoing an upgrade at JPL to add polarimetry capability and substantially larger GSFC detectors. We describe the capabilities, performance, and status of each instrument, highlighting science results obtained using FORCAST, GREAT, and HIPO during SOFIA Early Science observations conducted in 2011
    corecore