135 research outputs found
Deep SDSS optical spectroscopy of distant halo stars II. Iron, calcium, and magnesium abundances
We analyze a sample of 3,944 low-resolution (R ~ 2000) optical spectra from
the Sloan Digital Sky Survey (SDSS), focusing on stars with effective
temperatures 5800 < Teff < 6300 K, and distances from the Milky Way plane in
excess of 5 kpc, and determine their abundances of Fe, Ca, and Mg. We followed
the same methodology as in the previous paper in this series, deriving
atmospheric parameters by chi2 minimization, but this time we obtained the
abundances of individual elements by fitting their associated spectral lines.
Distances were calculated from absolute magnitudes obtained by a statistical
comparison of our stellar parameters with stellar-evolution models. The
observations reveal a decrease in the abundances of iron, calcium, and
magnesium at large distances from the Galactic center. The median abundances
for the halo stars analyzed are fairly constant up to a Galactocentric distance
r ~ 20 kpc, rapidly decrease between r ~ 20 and r ~ 40 kpc, and flatten out to
significantly lower values at larger distances, consistent with previous
studies. In addition, we examine the [Ca/Fe] and [Mg/Fe] as a function of Fe/H
and Galactocentric distance. Our results show that the most distant parts of
the halo show a steeper variation of the [Ca/Fe] and [Mg/Fe] with iron. We
found that at the range -1.6 < [Fe/H] < -0.4 [Ca/Fe] decreases with distance,
in agreement with earlier results based on local stars. However, the opposite
trend is apparent for [Mg/Fe]. Our conclusion that the outer regions of the
halo are more metal-poor than the inner regions, based on in situ observations
of distant stars, agrees with recent results based on inferences from the
kinematics of more local stars, and with predictions of recent galaxy formation
simulations for galaxies similar to the Milky Way
Deep SDSS optical spectroscopy of distant halo stars I. Atmospheric parameters and stellar metallicity distribution
We analyze a sample of tens of thousands of spectra of halo turnoff stars,
obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS),
to characterize the stellar halo population "in situ" out to a distance of a
few tens of kpc from the Sun. In this paper we describe the derivation of
atmospheric parameters. We also derive the overall stellar metallicity
distribution based on F-type stars observed as flux calibrators for the
Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an
automated method that determines the set of parameters of a model atmosphere
that reproduces each observed spectrum best. We used an optimization algorithm
and evaluate model fluxes by means of interpolation in a precomputed grid. In
our analysis, we account for the spectrograph's varying resolution as a
function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade)
data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP),
except for stars with logg (cgs units) lower than 2.5. An analysis of stars in
the globular cluster M13 reveals a dependence of the inferred metallicity on
surface gravity for stars with logg < 2.5, confirming the systematics
identified in the comparison with the SSPP. We find that our metallicity
estimates are significantly more precise than the SSPP results. We obtain a
halo metallicity distribution that is narrower and more asymmetric than in
previous studies. The lowest gravity stars in our sample, at tens of kpc from
the Sun, indicate a shift of the metallicity distribution to lower abundances,
consistent with what is expected from a dual halo system in the Milky Way.Comment: 10 pages, 5 figures, Table 1 includes model ugriz magnitudes for
stars with different atmospheric parameters in electronic forma
The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals
We are carrying out a large ancillary program with the SDSS-III, using the
fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution
H-band spectra of more than 1200 M dwarfs. These observations are used to
measure spectroscopic rotational velocities, radial velocities, physical
stellar parameters, and variability of the target stars. Here, we describe the
target selection for this survey and results from the first year of scientific
observations based on spectra that is publicly available in the SDSS-III DR10
data release. As part of this paper we present RVs and vsini of over 200 M
dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4
km/s. This survey significantly increases the number of M dwarfs studied for
vsini and RV variability (at ~100-200 m/s), and will advance the target
selection for planned RV and photometric searches for low mass exoplanets
around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial
velocity observations enable us to identify short period binaries, and AO
imaging of a subset of stars enables the detection of possible stellar
companions at larger separations. The high-resolution H-band APOGEE spectra
provide the opportunity to measure physical stellar parameters such as
effective temperatures and metallicities for many of these stars. At the
culmination of this survey, we will have obtained multi-epoch spectra and RVs
for over 1400 stars spanning spectral types of M0-L0, providing the largest set
of NIR M dwarf spectra at high resolution, and more than doubling the number of
known spectroscopic vsini values for M dwarfs. Furthermore, by modeling
telluric lines to correct for small instrumental radial velocity shifts, we
hope to achieve a relative velocity precision floor of 50 m/s for bright M
dwarfs. We present preliminary results of this telluric modeling technique in
this paper.Comment: Submitted to Astronomical Journa
Recommended from our members
The SDSS-III APOGEE Radial Velocity Survey Of M Dwarfs. I. Description Of The Survey And Science Goals
We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR 10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a v sin i precision of similar to 2 km s(-1) a measurement floor at v sin i = 4 km s(-1). This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at similar to 100-200 m s(-1)), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic a sin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m s(-1) for bright M dwarfs. With three or more epochs, this precision is adequate to detect substellar companions, including giant planets with short orbital periods, and flag them for higher-cadence followup. We present preliminary, and promising, results of this telluric modeling technique in this paper.Center for Exoplanets and Habitable WorldsPennsylvania State UniversityEberly College of SciencePennsylvania Space Grant ConsortiumNSF AST 1006676, AST 1126413National Science FoundationNational Aeronautics and Space Administration NNX-08AE38A, NNX13AB03GAlfred P. Sloan FoundationU.S. Department of Energy Oce of ScienceUniversity of ArizonaBrazilian Participation GroupBrookhaven National LaboratoryUniversity of CambridgeCarnegie Mellon UniversityUniversity of FloridaFrench Participation GroupGerman Participation GroupHarvard UniversityInstituto de Astrosica de CanariasMichigan State/Notre Dame/JINA Participation GroupJohns Hopkins UniversityLawrence Berkeley National LaboratoryMax Planck Institute for AstrophysicsMax Planck Institute for Extraterrestrial PhysicsNew Mexico State UniversityNew York UniversityOhio State UniversityUniversity of PortsmouthPrinceton UniversitySpanish Participation GroupUniversity of TokyoUniversity of UtahVanderbilt UniversityUniversity of VirginiaUniversity of WashingtonYale UniversityMcDonald Observator
High-resolution, H band Spectroscopy of Be Stars with SDSS-III/APOGEE: I. New Be Stars, Line Identifications, and Line Profiles
APOGEE has amassed the largest ever collection of multi-epoch,
high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars.
The 128/238 APOGEE Be stars for which emission had never previously been
reported serve to increase the total number of known Be stars by ~6%. We focus
on identification of the H-band lines and analysis of the emission peak
velocity separations (v_p) and emission peak intensity ratios (V/R) of the
usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is
found to preferentially form in the circumstellar disks at an average distance
of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines
suggests these lines are formed interior to Br11. By contrast, the observed IR
Fe II emission lines present evidence of having significantly larger formation
radii; distinctive phase lags between IR Fe II and H I Brackett emission lines
further supports that these species arise from different radii in Be disks.
Several emission lines have been identified for the first time including
~16895, a prominent feature in the spectra for almost a fifth of the sample
and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer
of the inner regions of Be disks. Unlike the typical metallic lines observed
for Be stars in the optical, the H-band metallic lines, such as Fe II 16878,
never exhibit any evidence of shell absorption, even when the H I lines are
clearly shell-dominated. The first known example of a quasi-triple-peaked Br11
line profile is reported for HD 253659, one of several stars exhibiting intra-
and/or extra-species V/R and radial velocity variation within individual
spectra. Br11 profiles are presented for all discussed stars, as are full
APOGEE spectra for a portion of the sample.Comment: accepted in A
A Cautionary Tale: MARVELS Brown Dwarf Candidate Reveals Itself To Be A Very Long Period, Highly Eccentric Spectroscopic Stellar Binary
We report the discovery of a highly eccentric, double-lined spectroscopic
binary star system (TYC 3010-1494-1), comprising two solar-type stars that we
had initially identified as a single star with a brown dwarf companion. At the
moderate resolving power of the MARVELS spectrograph and the spectrographs used
for subsequent radial-velocity (RV) measurements (R ~ <30,000), this particular
stellar binary mimics a single-lined binary with an RV signal that would be
induced by a brown dwarf companion (Msin(i)~50 M_Jup) to a solar-type primary.
At least three properties of this system allow it to masquerade as a single
star with a very low-mass companion: its large eccentricity (e~0.8), its
relatively long period (P~238 days), and the approximately perpendicular
orientation of the semi-major axis with respect to the line of sight (omega~189
degrees). As a result of these properties, for ~95% of the orbit the two sets
of stellar spectral lines are completely blended, and the RV measurements based
on centroiding on the apparently single-lined spectrum is very well fit by an
orbit solution indicative of a brown dwarf companion on a more circular orbit
(e~0.3). Only during the ~5% of the orbit near periastron passage does the
true, double-lined nature and large RV amplitude of ~15 km/s reveal itself. The
discovery of this binary system is an important lesson for RV surveys searching
for substellar companions; at a given resolution and observing cadence, a
survey will be susceptible to these kinds of astrophysical false positives for
a range of orbital parameters. Finally, for surveys like MARVELS that lack the
resolution for a useful line bisector analysis, it is imperative to monitor the
peak of the cross-correlation function for suspicious changes in width or
shape, so that such false positives can be flagged during the candidate vetting
process.Comment: 16 pages, 11 figures, 6 table
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: constraints on the time variation of fundamental constants from the large-scale two-point correlation function
We obtain constraints on the variation of the fundamental constants from the
full shape of the redshift-space correlation function of a sample of luminous
galaxies drawn from the Data Release 9 of the Baryonic Oscillations
Spectroscopic Survey. We combine this information with data from recent CMB,
BAO and H_0 measurements. We focus on possible variations of the fine structure
constant \alpha and the electron mass m_e in the early universe, and study the
degeneracies between these constants and other cosmological parameters, such as
the dark energy equation of state parameter w_DE, the massive neutrinos
fraction f_\nu, the effective number of relativistic species N_eff, and the
primordial helium abundance Y_He. When only one of the fundamental constants is
varied, our final bounds are \alpha / \alpha_0 = 0.9957_{-0.0042}^{+0.0041} and
m_e /(m_e)_0 = 1.006_{-0.013}^{+0.014}. For their joint variation, our results
are \alpha / \alpha_0 = 0.9901_{-0.0054}^{+0.0055} and m_e /(m_e)_0 = 1.028 +/-
0.019. Although when m_e is allowed to vary our constraints on w_DE are
consistent with a cosmological constant, when \alpha is treated as a free
parameter we find w_DE = -1.20 +/- 0.13; more than 1 \sigma away from its
standard value. When f_\nu and \alpha are allowed to vary simultaneously, we
find f_\nu < 0.043 (95% CL), implying a limit of \sum m_\nu < 0.46 eV (95% CL),
while for m_e variation, we obtain f_nu < 0.086 (95% CL), which implies \sum
m_\nu < 1.1 eV (95% CL). When N_eff or Y_He are considered as free parameters,
their simultaneous variation with \alpha provides constraints close to their
standard values (when the H_0 prior is not included in the analysis), while
when m_e is allowed to vary, their preferred values are significantly higher.
In all cases, our results are consistent with no variations of \alpha or m_e at
the 1 or 2 \sigma level.Comment: 18 pages, 16 figures. Submitted to MNRA
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs
We describe the design and performance of the near-infrared (1.51--1.70
micron), fiber-fed, multi-object (300 fibers), high resolution (R =
lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point
Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~
10^5 red giant stars that systematically sampled all Milky Way populations
(bulge, disk, and halo) to study the Galaxy's chemical and kinematical history.
It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014
using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New
Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV,
as well as a second spectrograph, a close copy of the first, operating at the
2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several
fiber-fed, multi-object, high resolution spectrographs have been built for
visual wavelength spectroscopy, the APOGEE spectrograph is one of the first
such instruments built for observations in the near-infrared. The instrument's
successful development was enabled by several key innovations, including a
"gang connector" to allow simultaneous connections of 300 fibers; hermetically
sealed feedthroughs to allow fibers to pass through the cryostat wall
continuously; the first cryogenically deployed mosaic volume phase holographic
grating; and a large refractive camera that includes mono-crystalline silicon
and fused silica elements with diameters as large as ~ 400 mm. This paper
contains a comprehensive description of all aspects of the instrument including
the fiber system, optics and opto-mechanics, detector arrays, mechanics and
cryogenics, instrument control, calibration system, optical performance and
stability, lessons learned, and design changes for the second instrument.Comment: 81 pages, 67 figures, PASP, accepte
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
We present the design and performance of the multi-object fiber spectrographs
for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon
Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999
on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the
spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II
surveys, enabling a wide variety of Galactic and extra-galactic science
including the first observation of baryon acoustic oscillations in 2005. The
spectrographs were upgraded in 2009 and are currently in use for BOSS, the
flagship survey of the third-generation SDSS-III project. BOSS will measure
redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha
absorption of 160,000 high redshift quasars over 10,000 square degrees of sky,
making percent level measurements of the absolute cosmic distance scale of the
Universe and placing tight constraints on the equation of state of dark energy.
The twin multi-object fiber spectrographs utilize a simple optical layout
with reflective collimators, gratings, all-refractive cameras, and
state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in
two channels over a bandpass covering the near ultraviolet to the near
infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven
heritage, the spectrographs were upgraded for BOSS with volume-phase
holographic gratings and modern CCD detectors, improving the peak throughput by
nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000
nm, and increasing the number of fibers from 640 to 1000 per exposure. In this
paper we describe the original SDSS spectrograph design and the upgrades
implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and
accepted by AJ. Provides background for the instrument responsible for SDSS
and BOSS spectra. 4th in a series of survey technical papers released in
Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral
Classification), and arXiv:1208.0022 (BOSS Overview
- …