40 research outputs found

    How to minimise the effect of tumour cell content in detection of aberrant genetic markers in neuroblastoma

    Get PDF
    Background:Clinical heterogeneity reflects the complexity of genetic events associated with neuroblastoma (NB). To identify the status of all described genetic loci with possible prognostic interest, high-throughput approaches have been used, but only with tumour cell content >60%. In some tumours, necrotic, haemorrhagic and/or calcification areas influence the low amount of neuroblasts. We evaluated the effect of tumour cell content in the detection of relevant aberrant genetic markers (AGM) diagnosed by fluorescence in situ hybridisation (FISH) on tissue microarrays (TMA) in NB.Methods:Two hundred and thirty-three MYCN non-amplified primary NB included in 12 TMAs were analysed.Results:Presence of AGM reduced event-free survival (EFS) (P=0.004) as well as overall survival (OS) (P=0.004) of patients in the whole cohort. There were no differences in prognostic impact of presence of AGM according to tumour cell content.Conclusion:We propose the use of FISH to diagnose AGM of all NB samples having the above-mentioned areas to determine patient risk

    Identification and characterization of maize microRNAs involved in the very early stage of seed germination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a new class of endogenous small RNAs that play essential regulatory roles in plant growth, development and stress response. Extensive studies of miRNAs have been performed in model plants such as rice, <it>Arabidopsis thaliana </it>and other plants. However, the number of miRNAs discovered in maize is relatively low and little is known about miRNAs involved in the very early stage during seed germination.</p> <p>Results</p> <p>In this study, a small RNA library from maize seed 24 hours after imbibition was sequenced by the Solexa technology. A total of 11,338,273 reads were obtained. 1,047,447 total reads representing 431 unique sRNAs matched to known maize miRNAs. Further analysis confirmed the authenticity of 115 known miRNAs belonging to 24 miRNA families and the discovery of 167 novel miRNAs in maize. Both the known and the novel miRNAs were confirmed by sequencing of a second small RNA library constructed the same way as the one used in the first sequencing. We also found 10 miRNAs that had not been reported in maize, but had been reported in other plant species. All novel sequences had not been earlier described in other plant species. In addition, seven miRNA* sequences were also obtained. Putative targets for 106 novel miRNAs were successfully predicted. Our results indicated that miRNA-mediated gene expression regulation is present in maize imbibed seed.</p> <p>Conclusions</p> <p>This study led to the confirmation of the authenticity of 115 known miRNAs and the discovery of 167 novel miRNAs in maize. Identification of novel miRNAs resulted in significant enrichment of the repertoire of maize miRNAs and provided insights into miRNA regulation of genes expressed in imbibed seed.</p

    Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles

    Get PDF
    Wild rodents are important hosts for tick larvae but co-infestations with other mites and insects are largely neglected. Small rodents were trapped at four study sites in Berlin, Germany, to quantify their ectoparasite diversity. Host-specific, spatial and temporal occurrence of ectoparasites was determined to assess their influence on direct and indirect zoonotic risk due to mice and voles in an urban agglomeration. Rodent-associated arthropods were diverse, including 63 species observed on six host species with an overall prevalence of 99%. The tick Ixodes ricinus was the most prevalent species, found on 56% of the rodents. The trapping location clearly affected the presence of different rodent species and, therefore, the occurrence of particular host-specific parasites. In Berlin, fewer temporary and periodic parasite species as well as non-parasitic species (fleas, chiggers and nidicolous Gamasina) were detected than reported from rural areas. In addition, abundance of parasites with low host-specificity (ticks, fleas and chiggers) apparently decreased with increasing landscape fragmentation associated with a gradient of urbanisation. In contrast, stationary ectoparasites, closely adapted to the rodent host, such as the fur mites Myobiidae and Listrophoridae, were most abundant at the two urban sites. A direct zoonotic risk of infection for people may only be posed by Nosopsyllus fasciatus fleas, which were prevalent even in the city centre. More importantly, peridomestic rodents clearly supported the life cycle of ticks in the city as hosts for their subadult stages. In addition to trapping location, season, host species, body condition and host sex, infestation with fleas, gamasid Laelapidae mites and prostigmatic Myobiidae mites were associated with significantly altered abundance of I. ricinus larvae on mice and voles. Whether this is caused by predation, grooming behaviour or interaction with the host immune system is unclear. The present study constitutes a basis to identify interactions and vector function of rodent-associated arthropods and their potential impact on zoonotic diseases

    Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing

    Get PDF
    Abstract Background Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. Results We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analysed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. Conclusion We have discovered and analysed a large number of conserved and melon-specific sRNAs, including miRNAs and their potential target genes. This provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melon-virus interactions.This work was supported by grants AGL2009-07552/AGR, BIO2006-13107 (Ministerio de Ciencia e Innovación, Spain) and MELONOMICS (Fundación Genoma España, Spain).Peer Reviewe

    An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model

    Get PDF
    We previously showed that middle-aged female rats sustain a larger infarct following experimental stroke as compared to younger female rats, and paradoxically, estrogen treatment to the older group is neurotoxic. Plasma and brain insulin-like growth factor-1 (IGF-1) levels decrease with age. However, IGF-1 infusion following stroke, prevents estrogen neurotoxicity in middle-aged female rats. IGF1 is neuroprotective and well tolerated, but also has potentially undesirable side effects. We hypothesized that microRNAs (miRNAs) that target the IGF-1 signaling family for translation repression could be alternatively suppressed to promote IGF-1-like neuroprotection. Here, we report that two conserved IGF pathway regulatory microRNAs, Let7f and miR1, can be inhibited to mimic and even extend the neuroprotection afforded by IGF-1. Anti-mir1 treatment, as late as 4 hours following ischemia, significantly reduced cortical infarct volume in adult female rats, while anti-Let7 robustly reduced both cortical and striatal infarcts, and preserved sensorimotor function and interhemispheric neural integration. No neuroprotection was observed in animals treated with a brain specific miRNA unrelated to IGF-1 (anti-miR124). Remarkably, anti-Let7f was only effective in intact females but not males or ovariectomized females indicating that the gonadal steroid environment critically modifies miRNA action. Let7f is preferentially expressed in microglia in the ischemic hemisphere and confirmed in ex vivo cultures of microglia obtained from the cortex. While IGF-1 was undetectable in microglia harvested from the non-ischemic hemisphere, IGF-1 was expressed by microglia obtained from the ischemic cortex and was further elevated by anti-Let7f treatment. Collectively these data support a novel miRNA-based therapeutic strategy for neuroprotection following stroke

    Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants

    Get PDF
    miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124–expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology

    Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Get PDF
    Extent: 15p.Background: MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain. Results: We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions: We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.King-Hwa Ling, Peter J Brautigan, Christopher N Hahn, Tasman Daish, John R Rayner, Pike-See Cheah, Joy M Raison, Sandra Piltz Jeffrey R Mann, Deidre M Mattiske, Paul Q Thomas, David L Adelson and Hamish S Scot

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases
    corecore