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How to minimise the effect of tumour cell content in detection of
aberrant genetic markers in neuroblastoma
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BACKGROUND: Clinical heterogeneity reflects the complexity of genetic events associated with neuroblastoma (NB). To identify the
status of all described genetic loci with possible prognostic interest, high-throughput approaches have been used, but only with
tumour cell content 460%. In some tumours, necrotic, haemorrhagic and/or calcification areas influence the low amount of
neuroblasts. We evaluated the effect of tumour cell content in the detection of relevant aberrant genetic markers (AGM) diagnosed
by fluorescence in situ hybridisation (FISH) on tissue microarrays (TMA) in NB.
METHODS: Two hundred and thirty-three MYCN non-amplified primary NB included in 12 TMAs were analysed.
RESULTS: Presence of AGM reduced event-free survival (EFS) (P¼ 0.004) as well as overall survival (OS) (P¼ 0.004) of patients in the
whole cohort. There were no differences in prognostic impact of presence of AGM according to tumour cell content.
CONCLUSION: We propose the use of FISH to diagnose AGM of all NB samples having the above-mentioned areas to determine
patient risk.
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Neuroblastoma (NB) is the most common cancer diagnosed during
the first year of life (Maris, 2010), and accounts for 7.6% of all
childhood malignancies (Kaatsch, 2010). This embryonal tumour
of the autonomic nervous system is the most frequent extracranial
solid cancer; and the clinical presentation is highly variable,
ranging from mass without symptoms to widely disseminated
disease (Maris, 2010).

Clinical markers are not sufficient for an accurate prediction of
prognosis, and genetic markers have been shown to provide
prognostic information. The extreme clinical heterogeneity reflects
the complexity of genetic and genomic events associated with the
development and progression of NB (Capasso and Diskin, 2010).
In addition to the evaluation of known single molecular markers
such as MYCN amplification and 11q deletion, high-throughput
approaches have been used. Janoueix-Lerosey et al (2009) revealed
two distinct genetic classes of NB. Tumours with only numerical
chromosome alterations (NCA) are associated with an excellent
outcome, even in patients older than 18 months or with advanced
stages of disease. The second group includes segmental chromo-
some alterations (SCA) alone or with MYCN amplification. These
alterations also occur in association with NCA, but the presence of
SCA overrides NCA with respect to prognostic impact. The authors
suggested that any SCA is associated with an increased risk of
relapse (Janoueix-Lerosey et al, 2009). Also, it has been suggested
that tumour progression is linked to the accumulation of SCA.
This possible genomic evolution should be taken into account

in treatment therapies of low- and intermediate-risk NB
(Schleiermacher et al, 2010).

In this same journal, the International Neuroblastoma Risk
Group (INRG) Biology Subcommittee recommends fluorescence
in situ hybridisation (FISH) to establish the MYCN status, whereas
segmental aberrations are currently detected using either FISH or
polymerase chain reaction (Ambros et al, 2009). Since the pattern
of DNA-based genomic changes seems to be prognostic, the INRG
Biology Subcommittee suggests using pan- or multigenomic
techniques, such as array-based methods or multiplex ligation-
dependent probe amplification (MLPA), enabling an analysis of all
relevant genomic loci (Ambros et al, 2009).

However, solid tumour samples show intratumoural hetero-
geneity, containing tumour cells, as well as normal surrounding
and infiltrating somatic tissues, thus complicating the detection of
genetic abnormalities (Attiyeh et al, 2009). Although necrotic,
haemorrhagic and/or calcification areas can reduce the quality of
DNA, stromal contamination is the major confounding factor in
the analysis of solid tumour samples by DNA-based techniques
(Volchenboum et al, 2009). Therefore, molecular studies on
neuroblastic tumours require identification of tumour and
Schwannian stromal cells. The tumour cell content must be
determined in collaboration with the pathologist because a content
of 460% is an indispensable requisite for most molecular studies
using DNA-based methods (Ambros et al, 2009, 2011).

Nevertheless, there are samples from neuroblastic tumours
containing o60% of neuroblasts. In these cases, a low tumour cell
number can also be sufficient to determine aberrant (numeric or
structural) genetic markers (AGM) by FISH (Ambros et al, 2009).
As a combined molecular and cytological approach, the major
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advantage of this technique is to provide an intermediate degree of
resolution between DNA analysis and chromosomal investigations
while retaining information at single-cell level (Volpi and Bridger,
2008). The combination of DNA-specific probes for FISH and
tissue microarrays (TMAs) facilitates the identification of changes
at any genomic locus in several tissue samples at once,
independently of the percentage of tumour cells (Piqueras et al,
2009, 2010; Sugimura et al, 2010).

The aim of this study is to evaluate the effect of tumour cell
content on detection of AGM diagnosed by FISH on TMA in NB.

MATERIALS AND METHODS

Two hundred and thirty-three MYCN non-amplified primary NB
included in 12 previously constructed TMAs were analysed
(Piqueras et al, 2010) (Supplementary Table 1, summary of clinical
characteristics of patients, supplementary materials available
online). Representative tumour areas on haematoxylin and
eosin-stained slides, avoiding necrotic, haemorrhagic and artefactual
areas, as well as stromal areas with predominantly Schwann cells,
were selected by the pathologist. Informed consent was provided
by a parent or guardian for each patient enrolled in this study.
MYCN gene and 1p36 region status, as well as aberrations in 11q
arm and 17q arm, had previously been determined by FISH using
the following commercial DNA probes: MYCN (2p24) red/
a-satellite 2 green; 1p36 midisatellite green/chromosome 1 satellite
red (Q-BIOgene, Amsterdam, The Netherlands); ATM (11q22) red/
SE 11 green; and MPO (17q23) iso 17q red/p53 (17p13) green
(Kreatech Biotechnology, Amsterdam, The Netherlands).

Following our own system for detecting genetic alterations in
formalin-fixed paraffin-embedded by FISH, we distinguished cells
without any gene alterations (group 1), cells with any possible
genetic alteration (group 2) and cells with cutting artefacts (group 3),
including nuclear fragments generated from sectioning of the
nuclei (Piqueras et al, 2009). As previously published, genetic
alteration was diagnosed when the net percentage of cells with
genetic alteration, obtained subtracting the total percentage of
group 3 from the cellular population belonging to group 2, was
415%, (Piqueras et al, 2009). ENQUA and INRG definitions for
chromosome aberrations in neuroblastic tumours were applied
(Ambros et al, 2003, 2009).

We considered the status of the four genetic markers. A new
variable was created: presence of AGM, distinguishing between
tumours with no AGM vs tumours with any AGM detected by FISH
on TMAs.

Statistical analysis

Events for event-free survival (EFS) analysis were considered as
relapse or death from disease. Time to event for EFS was calculated
as the time from diagnosis until the time of first event, or until the
time of last patient contact if no event occurred. Time to event for
overall survival (OS) analysis was the time from diagnosis until
death, or until the time of last contact if the patient was alive.
Univariate analyses were performed using Kaplan–Meier to
generate survival curves, which were compared using a log-rank
test to identify statistically significant predictive factors of EFS and
OS. P-values o0.05 were considered statistically significant. All
EFS and OS values are reported at the 5-year time point with the
standard error.

RESULTS

One third of the 233 patients presented advanced stage disease,
and 68% of patients were younger than 18 months. The majority of
cases were poorly differentiated or undifferentiated NBs. Regard-
ing genetic alterations diagnosed by FISH on TMAs, 5.6% were

MYCN gain tumours, 13.3% presented 1p36 deletion, 14.2%
harboured 11q deletion and 34.9% showed 17q gain. Ninety-four
samples (40.3%) were classified as tumours with AGM; 59 of these
had only one genetic alteration, 24 cases had 2 aberrations and 11
had more than 2 AGM.

Presence of AGM reduced EFS (P¼ 0.004) as well as OS
(P¼ 0.004) of patients in the whole cohort. We considered the
tumour cell content of the samples and divided the cohort into two
subgroups: tumours up to 50% (26.2%) and tumours with 450%
of tumour cells (73.8%). Both subgroups included NBs with
different degrees of differentiation, as well as ganglioneuroblasto-
mas and ganglioneuromas (Supplementary Table 1, supplementary
materials). In the first group, patients harbouring tumours with
AGM had significantly worse 5-year EFS than patients with no
AGM (64.2±11.9% vs 89.5±5.8%, log-rank, P¼ 0.028). Also, a
trend towards lower 5-year OS (75.6±10.7% vs 92.2±5.4%,
log-rank, P¼ 0.065) was observed. Similarly, presence of AGM
was related to reduced 5-year EFS (73.4±6% vs 89.9±3.4%, log-
rank, P¼ 0.04) and 5-year OS (81.8±5.3% vs 96.1±2.2%, log-rank,
P¼ 0.018) in tumours with higher tumour cell content.

In order to confirm that there were no differences in patient
outcome according to tumour cell content of samples, we then
considered AGM and divided the whole cohort into two categories:
absence (n¼ 139) and presence (n¼ 94) of AGM. In tumours
without AGM, there were no statistically significant differences in
EFS (P¼ 0.873) or OS (P¼ 0.613) for patients with samples having
more or less than 50% tumour cell content (Figures 1A and B). Nor
were there statistically significant differences in EFS (P¼ 0.371) or
OS (P¼ 0.401) when considering tumour cell content in tumours
with AGM (Figures 1C and D).

DISCUSSION

Our data clearly demonstrate that there are no differences in
prognostic impact of presence of AGM, detected by FISH on TMA
including representative tumour areas, according to tumour cell
content. In the whole cohort, patients with AGM had significantly
worse EFS and OS than patients with no AGM. Furthermore, the
poor outcome of patients harbouring tumours with AGM was
observed in both tumours subgroups, tumours up to 50% and
tumours with 450% of tumour cell content.

In the last two decades, since the initial discovery of the MYCN
oncogene, many prognostic biomarkers have been proposed for
NB. As the genomic type provides additional important prognostic
information, the future INRG classification system will rely on the
genetic profile of NB tumours rather than on the presence or
absence of individual genetic abnormalities (Cohn et al, 2009).
Whole-genome analysis techniques enable the study of DNA copy
number gains and losses over the entire genome in one single
experiment and have been used extensively to define the genomic
profile of a great variety of solid tumours (Van Roy et al, 2009). A
novel design of MLPA probes has been developed, which allows
MLPA analysis on small amounts of DNA (Sorensen et al, 2008).
Nevertheless, DNA-based approaches, including MLPA, are not
always applicable in clinical practice, because these techniques
require DNA obtained from samples with a tumour cell content of
460% (Ambros et al, 2009).

Volchenboum et al (2009) hypothesised that genome-wide
studies of tumour samples may under report genetic changes if
the samples are contaminated with normal stromal tissue or
heterogeneous tumour elements containing diploid DNA. Re-
cently, our group published a paper comparing relevant genetic
aberrations in NB detected by FISH and MLPA in cases with
440% tumour cell content, finding a high concordance between
both techniques (Villamon et al, 2011). Discrepancies in genetic
aberrations detection could be due to intratumoural heterogeneity
observed in different tumour areas analysed, as well as the low

Effect of tumour cell content in AGM detection in NB

M Piqueras et al

90

British Journal of Cancer (2011) 105(1), 89 – 92 & 2011 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



percentage of neuroblastic cells with the specific DNA copy
number alteration or high level of Schwann cells (Villamon et al,
2011). Likewise, the SIOPEN (SIOP Europe Neuroblastoma) Biology
Committee has published a study examining an inter-technique and
inter-laboratory testing of NB MLPA kit. They suggested that a
tumour genomic profile with no alterations (flat profile) by MLPA
can be caused by tumour cell content below 60%, or by NBs samples
with a higher amount of Schwann cells (Ambros et al, 2011).

In contrast, FISH technology facilitates single-cell genetic
analysis of target regions for investigating cell heterogeneity
within tumours. The use of FISH enables the detection of loss or
gain of genetic material and reveals rearrangements unsuspected
by high-resolution techniques in samples with up to 50% tumour
cell content; samples with necrotic, haemorrhagic and/or calcifica-
tion areas, or samples with a large amount of Schwann cells.

In conclusion, FISH is able to diagnose relevant AGM to
determine the prognostic category of NB in case of samples with
lower tumour cell content, whereas pangenomic/multilocus data
provide a whole-genome profile of samples with higher tumour cell

content. Genomic instability analysis of all NB samples to
determine patient risk, including cases with low tumour cell
content, will be necessary to allow more accurate stratification of
patients, and thus reduce aggressive therapy without affecting the
outcome for patients.
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Figure 1 Kaplan–Meier curves showing the effect of tumour cell content on clinical impact of aberrant (numeric or structural) genetic markers (AGM) in
neuroblastoma patients. (A and B) Event-free survival (EFS) and overall survival (OS) of patients with tumours without AGM according to tumour cell
content of sample. (C and D) EFS and OS of patients suffering with tumours with AGM according to tumour cell content of sample.
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