131 research outputs found

    On the Globular Cluster IMF below 1 Solar Mass

    Full text link
    (Abridged) Accurate luminosity functions (LF) for a dozen globular clusters have now been measured at or just beyond their half-light radius using HST. They span almost the entire cluster main sequence below ~ 0.75 Msolar. All these clusters exhibit LF that rise continuously from an absolute I magnitude M_I ~ 6 to a peak at M_I ~ 8.5-9 and then drop with increasing M_I. Transformation of the LF into mass functions (MF) by means of the most recent mass luminosity relations that are consistent with all presently available data on the physical properties of low mass, low metallicity stars shows that all the LF observed so far can be obtained from MF having the shape of a log-normal distribution with characteristic mass m_c=0.33 +/- 0.03 Msolar and standard deviation sigma = 1.81 +/- 0.19. After correction for the effects of mass segregation, the variation of the ratio of the number of higher to lower mass stars with cluster mass or any simple orbital parameter or the expected time to disruption recently computed for these clusters shows no statistically significant trend over a range of this last parameter of more than a factor of 100. We conclude that the global MF of these clusters have not been measurably modified by evaporation and tidal interactions with the Galaxy and, thus, should reflect the initial distribution of stellar masses. Since the log-normal function that we find is also very similar to the one obtained independently for much younger clusters and to the form expected theoretically, the implication seems to be unavoidable that it represents the true stellar IMF for this type of stars in this mass range.Comment: Accepted for publication in The Astrophysical Journal. Contains 28 pages with 6 figure

    Study of the production of Λb0\Lambda_b^0 and B‟0\overline{B}^0 hadrons in pppp collisions and first measurement of the Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- branching fraction

    Get PDF
    The product of the Λb0\Lambda_b^0 (B‟0\overline{B}^0) differential production cross-section and the branching fraction of the decay Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- (B‟0→J/ψK‟∗(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0) is measured as a function of the beauty hadron transverse momentum, pTp_{\rm T}, and rapidity, yy. The kinematic region of the measurements is pT<20 GeV/cp_{\rm T}<20~{\rm GeV}/c and 2.0<y<4.52.0<y<4.5. The measurements use a data sample corresponding to an integrated luminosity of 3 fb−13~{\rm fb}^{-1} collected by the LHCb detector in pppp collisions at centre-of-mass energies s=7 TeV\sqrt{s}=7~{\rm TeV} in 2011 and s=8 TeV\sqrt{s}=8~{\rm TeV} in 2012. Based on previous LHCb results of the fragmentation fraction ratio, fΛB0/fdf_{\Lambda_B^0}/f_d, the branching fraction of the decay Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^- is measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4}, \end{equation*} where the first uncertainty is statistical, the second is systematic, the third is due to the uncertainty on the branching fraction of the decay B‟0→J/ψK‟∗(892)0\overline{B}^0\rightarrow J/\psi\overline{K}^*(892)^0, and the fourth is due to the knowledge of fΛb0/fdf_{\Lambda_b^0}/f_d. The sum of the asymmetries in the production and decay between Λb0\Lambda_b^0 and Λ‟b0\overline{\Lambda}_b^0 is also measured as a function of pTp_{\rm T} and yy. The previously published branching fraction of Λb0→J/ψpπ−\Lambda_b^0\rightarrow J/\psi p\pi^-, relative to that of Λb0→J/ψpK−\Lambda_b^0\rightarrow J/\psi pK^-, is updated. The branching fractions of Λb0→Pc+(→J/ψp)K−\Lambda_b^0\rightarrow P_c^+(\rightarrow J/\psi p)K^- are determined.Comment: 29 pages, 19figures. All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm

    Measurements of long-range near-side angular correlations in sNN=5\sqrt{s_{\text{NN}}}=5TeV proton-lead collisions in the forward region

    Get PDF
    Two-particle angular correlations are studied in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of sNN=5\sqrt{s_{\text{NN}}}=5TeV, collected with the LHCb detector at the LHC. The analysis is based on data recorded in two beam configurations, in which either the direction of the proton or that of the lead ion is analysed. The correlations are measured in the laboratory system as a function of relative pseudorapidity, Δη\Delta\eta, and relative azimuthal angle, Δϕ\Delta\phi, for events in different classes of event activity and for different bins of particle transverse momentum. In high-activity events a long-range correlation on the near side, Δϕ≈0\Delta\phi \approx 0, is observed in the pseudorapidity range 2.0<η<4.92.0<\eta<4.9. This measurement of long-range correlations on the near side in proton-lead collisions extends previous observations into the forward region up to η=4.9\eta=4.9. The correlation increases with growing event activity and is found to be more pronounced in the direction of the lead beam. However, the correlation in the direction of the lead and proton beams are found to be compatible when comparing events with similar absolute activity in the direction analysed.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm

    Evidence for the strangeness-changing weak decay Ξb−→Λb0π−\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb−1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay Ξb−→Λb0π−\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞb−fΛb0B(Ξb−→Λb0π−)=(5.7±1.8−0.9+0.8)×10−4{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞb−f_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the b→Ξb−b\to\Xi_b^- and b→Λb0b\to\Lambda_b^0 fragmentation fractions, and B(Ξb−→Λb0π−){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb−/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(Ξb−→Λb0π−){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm

    Search for the rare decays B0→J/ÏˆÎłB^{0}\to J/\psi \gamma and Bs0→J/ÏˆÎłB^{0}_{s} \to J/\psi \gamma

    Get PDF
    A search for the rare decay of a B0B^{0} or Bs0B^{0}_{s} meson into the final state J/ÏˆÎłJ/\psi\gamma is performed, using data collected by the LHCb experiment in pppp collisions at s=7\sqrt{s}=7 and 88 TeV, corresponding to an integrated luminosity of 3 fb−1^{-1}. The observed number of signal candidates is consistent with a background-only hypothesis. Branching fraction values larger than 1.7×10−61.7\times 10^{-6} for the B0→J/ÏˆÎłB^{0}\to J/\psi\gamma decay mode are excluded at 90% confidence level. For the Bs0→J/ÏˆÎłB^{0}_{s}\to J/\psi\gamma decay mode, branching fraction values larger than 7.4×10−67.4\times 10^{-6} are excluded at 90% confidence level, this is the first branching fraction limit for this decay.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-044.htm

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan ÎČ in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    The Contribution of Coevolving Residues to the Stability of KDO8P Synthase

    Get PDF
    The evolutionary tree of 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase (KDO8PS), a bacterial enzyme that catalyzes a key step in the biosynthesis of bacterial endotoxin, is evenly divided between metal and non-metal forms, both having similar structures, but diverging in various degrees in amino acid sequence. Mutagenesis, crystallographic and computational studies have established that only a few residues determine whether or not KDO8PS requires a metal for function. The remaining divergence in the amino acid sequence of KDO8PSs is apparently unrelated to the underlying catalytic mechanism.The multiple alignment of all known KDO8PS sequences reveals that several residue pairs coevolved, an indication of their possible linkage to a structural constraint. In this study we investigated by computational means the contribution of coevolving residues to the stability of KDO8PS. We found that about 1/4 of all strongly coevolving pairs probably originated from cycles of mutation (decreasing stability) and suppression (restoring it), while the remaining pairs are best explained by a succession of neutral or nearly neutral covarions.Both sequence conservation and coevolution are involved in the preservation of the core structure of KDO8PS, but the contribution of coevolving residues is, in proportion, smaller. This is because small stability gains or losses associated with selection of certain residues in some regions of the stability landscape of KDO8PS are easily offset by a large number of possible changes in other regions. While this effect increases the tolerance of KDO8PS to deleterious mutations, it also decreases the probability that specific pairs of residues could have a strong contribution to the thermodynamic stability of the protein

    Study of ψ(2S) production and cold nuclear matter effects in pPb collisions at √ sNN = 5 TeV

    Get PDF
    The production of ψ(2S) mesons is studied in dimuon final states using proton-lead (pPb) collision data collected by the LHCb detector. The data sample corresponds to an integrated luminosity of 1.6 nb−1. The nucleon-nucleon centre-of-mass energy of the pPb collisions is (Formula presented.) TeV. The measurement is performed using ψ(2S) mesons with transverse momentum less than 14 GeV/c and rapidity y in the ranges 1.5 &lt; y &lt; 4.0 and −5.0 &lt; y &lt; −2.5 in the nucleon-nucleon centre-of-mass system. The forward-backward production ratio and the nuclear modification factor are determined for ψ(2S) mesons. Using the production cross-section results of ψ(2S) and J/ψ mesons from b-hadron decays, the (Formula presented.) cross-section in pPb collisions at (Formula presented.) TeV is obtained

    Measurements of long-range near-side angular correlations in √sNN = 5 TeV proton-lead collisions in the forward region

    Get PDF
    Two-particle angular correlations are studied in proton-lead collisions at a nucleon–nucleon centre-of-mass energy of √sNN = 5 TeV , collected with the LHCb detector at the LHC. The analysis is based on data recorded in two beam configurations, in which either the direction of the proton or that of the lead ion is analysed. The correlations are measured in the laboratory system as a function of relative pseudorapidity, Δη, and relative azimuthal angle, Δϕ, for events in different classes of event activity and for different bins of particle transverse momentum. In high-activity events a long-range correlation on the near side, Δ ϕ ≈ 0 , is observed in the pseudorapidity range 2.0 &lt; η &lt; 4.9 . This measurement of long-range correlations on the near side in proton-lead collisions extends previous observations into the forward region up to η = 4.9 . The correlation increases with growing event activity and is found to be more pronounced in the direction of the lead beam. However, the correlation in the direction of the lead and proton beams are found to be compatible when comparing events with similar absolute activity in the direction analysed

    Search for the doubly heavy baryon Ξbc+\it{\Xi}_{bc}^{+} decaying to J/ψΞc+J/\it{\psi} \it{\Xi}_{c}^{+}

    Get PDF
    A first search for the Ξbc+→J/ψΞc+\it{\Xi}_{bc}^{+}\to J/\it{\psi}\it{\Xi}_{c}^{+} decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9 fb−19\,\mathrm{fb}^{-1} recorded at centre-of-mass energies of 7, 8, and 13 TeV13\mathrm{\,Te\kern -0.1em V}. Two peaking structures are seen with a local (global) significance of 4.3 (2.8)4.3\,(2.8) and 4.1 (2.4)4.1\,(2.4) standard deviations at masses of 6571 MeV ⁣/c26571\,\mathrm{Me\kern -0.1em V\!/}c^2 and 6694 MeV ⁣/c26694\,\mathrm{Me\kern -0.1em V\!/}c^2, respectively. Upper limits are set on the Ξbc+\it{\Xi}_{bc}^{+} baryon production cross-section times the branching fraction relative to that of the Bc+→J/ψDs+B_{c}^{+}\to J/\it{\psi} D_{s}^{+} decay at centre-of-mass energies of 8 and 13 TeV13\mathrm{\,Te\kern -0.1em V}, in the Ξbc+\it{\Xi}_{bc}^{+} and in the Bc+B_{c}^{+} rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20 GeV ⁣/c20\,\mathrm{Ge\kern -0.1em V\!/}c, respectively. Upper limits are presented as a function of the Ξbc+\it{\Xi}_{bc}^{+} mass and lifetime.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-005.html (LHCb public pages
    • 

    corecore