5,608 research outputs found

    Impact of the physico-chemistry of the wine on membrane filtration performance

    Get PDF
    During the process of wine making, operation of cross-flow microfiltration allows a one-step clarification and sterilization of wine, with lower waste compared to the conventional processes of clarification and sterilization. Indeed, these processes are sources of voluminous waste (earth, Kieselguhr, additives), when discharges are becoming more and more restricted by environmental and health rules. Nevertheless, cross-flow microfiltration of wine presents a major drawback: membrane fouling causes a significant decrease in the flow rates, due to excessive retention of some wine components which could lead ultimately to the alteration of the quality of wine. The aim of this work was to study the impact of some specific wine components (phenolic compounds and yeast extract), as well as some physico-chemical parameters (pH) in regard to membrane fouling. Studies were performed using one red wine and synthetic wines, using cellulose acetate membranes (0.2 μm) operated in the dead-end mode under 2 bar pressure. The simultaneous presence of the both species of phenolic compounds (anthocyanins and tannins) in the synthetic wine was shown to be the main cause of fouling, whereas the presence of one specie leads only to standard blocking type behavior. An important decrease in the flow rates was also observed when yeast extract was added to the liquid. This yeast extract was shown to contain 300 mg/g of proteins and to be free of mannoproteins. The influence of these proteins on fouling was demonstrated while pre-treating the synthetic wine with bentonite, which was able to adsorb proteins, and in this case, no fouling was observed. It was also shown that, when decreasing the pH, the flow rate was enhanced. For all experiments, a fouling index or cake specific resistance, according to the type of fouling, was calculated in order to be used as a reference to estimate the filterability of a given wine, according to its composition in some targeted molecules. Finally, the experiments of the actual red wine exhibited complete rapid fouling of the membrane, probably due to the presence of high concentration of phenolic compounds

    Colombia y su tensa relación con la CIDH

    Get PDF
    Colombia es el segundo país de la región con más casos ante el Sistema Interamericano de Derechos Humanos, que comprende la Comisión y la Corte, sin embargo y tal vez por eso, ha sido una relación de amores y odios. Las últimas medidas cautelares de la CIDH más recordadas en el país fueron las otorgadas a las comunidades wayuú, cuyos niños mueren de hambre y sed en La Guajira y las de Gustavo Petro, exalcalde de Bogotá, cuando fue destituido por la Procuraduría. Ricardo Asturio Gil Barrera, docente de Derecho Internacional de la Universidad de Medellín, explicó que casi todos los estados esperan a que sea la CorteIDH, que es la segunda instancia del Sistema, la que dicte una sentencia definitiva, y que Colombia no es la excepción

    Analysis of membrane fouling during cross-flow microfiltration of wine

    Get PDF
    The aim of this study was to investigate the individual impact on wine molecules as tannins, pectins and mannoproteins on multichannel ceramic membrane fouling during wine cross-flow microfiltration. The characterization of fouling mechanisms involved in the previous filtrations was realized by using the classical fouling models and the analysis of the total resistance curves. It was shown that the obtained initial fluxes are dependant of the nature of the studied molecules and their concentration. According to their increasing effect on permeate flux decline, the studied wine components could be ranked as: mannoproteins < tannins < pectins. During the filtration of wine added with tannins, it was found that the filtrations were governed by the cake layer formation mechanism. The presence of pectins caused the formation of gel-type layer which is found to be compressible under high pressures. For wines added with mannoprotein filtrations, it was shown that there is a threshold concentration above which a plateau value of permeate flux is obtained. Industrial relevance: The cross-flow microfiltration applied to wine filtration has become a legitimate alternative to conventional filtration processes. However, membrane fouling which affects the operating costs and the plant maintenance, limits the widespread application of this technique. To avoid or reduce membrane fouling, it is extremely important to identify the fouling elements and the mechanisms that govern the process. A better understanding of the mechanisms whereby fouling is formed during wine microfiltration may lead to be in position to control fouling or reduce it, to improve cleaning procedures and to adapt the process to the product to be filtered. The results presented in this paper concern the investigation and the understanding of fouling mechanisms by wine colloids (tannins, pectins and mannoproteins). We found that wine colloids had a strong impact on membrane fouling. Independently of their concentrations found in wine, they can be ranked according to their increasing effect on permeate flux as: mannoproteins b tannins b pectins. Such result provides important information and a better vision on the methods which can be used to limit membrane fouling for example the use of pectinolytic enzymes before filtration in order to hydrolyze pectin chains or precipitation of unstable tannins by finning the wine with bentonite. By elucidating fouling mechanisms such as cake layer and gel type layer, we can adapt the hydrodynamic process to control membrane fouling

    Cross-flow microfiltration applied to oenology: A review

    Get PDF
    The cross-flow microfiltration applied to wine filtration has become a legitimate alternative to conventional filtration processes. However, membrane fouling which affects the operating costs and the plant maintenance, limits the widespread application of this technique. The aim of this review is to provide a better understanding of the development of the cross-flow microfiltration in wine industry, as well as the complexity of wine composition and its consequences on membrane fouling. This review covers also the impact of the operating conditions and the membrane characteristics on fouling mechanisms. Strategies to limit fouling as well as the latest innovations and commercial proposal are discussed in this paper

    An algorithm proposal for a minimum cost SDR multi-standard system using graph theory

    Get PDF
    International audienceThe design of future multi-standard systems remains a challenge due to increasing flexibility requirements. Promising solutions include designing flexible radio architectures that exploit common aspects between the different set of standards cohabiting in the device. In this paper, graph theory appears and particularly the study of directed hypergraphs, which helps in the research concerning minimum cost multistandard designs. A cost function which calculates the cost of any possible option of implementation is mentioned but its derivations won't be in the scope of this paper. Our objective is to optimize this proposed cost function to its minimum possible value and thus solving the optimization problem that finds balance between flexibility and computing efficiency. For this, we propose a Minimum Cost Design (MCD) algorithm capable of selecting the option which has the minimum cost to pay and will present its complete set of instructions in this paper. This algorithm exploits various definitions and notations of directed hypergraphs

    The consolidation of social assistance in Brazil and its challenges, 1988-2008

    Full text link
    [Introduction ...] The paper is divided into six sections, including this introduction. Section 2 briefly describes the 1988 constitution and its main contributions to the policies under discussion. Section 3 examines cash transfer programmes under social assistance: the Continuous Cash Benefit (Benefício de Prestação Continuada, BPC) and the Bolsa Família programme (Programa Bolsa Família, PBF). Section 4 looks at the effort to reorganise the supply of social assistance services, with an emphasis on the establishment and improvement of the Unified Social Assistance System (Sistema Único de Assistência Social, SUAS). Section 5 addresses the policy’s main challenges today. The final section offers concluding remarks

    Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs

    Get PDF
    Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen

    Transcriptome changes in Hirschfeldia incana in response to lead exposure

    Get PDF
    Hirschfeldia incana, a pseudometallophyte belonging to the Brassicaceae family and widespread in the Mediterranean region, was selected for its ability to grow on soils contaminated by lead (Pb). The global comparison of gene expression using microarrays between a plant susceptible to Pb (Arabidopsis thaliana) and a Pb tolerant plant (H. incana) enabled the identification of a set of specific genes expressed in response to lead exposure. Three groups of genes were particularly over-represented by the Pb exposure in the biological processes categorized as photosynthesis, cell wall, and metal handling. Each of these gene groups was shown to be directly involved in tolerance or in protection mechanisms to the phytotoxicity associated with Pb. Among these genes, we demonstrated that MT2b, a metallothionein gene, was involved in lead accumulation, confirming the important role of metallothioneins in the accumulation and the distribution of Pb in leaves. On the other hand, several genes involved in biosynthesis of ABA were shown to be up regulated in the roots and shoots of H. incana treated with Pb, suggesting that ABA-mediated signaling is a possible mechanism in response to Pb treatment in H. incana. This latest finding is an important research direction for future studies

    Reactivity and fate of secondary alkane sulfonates (SAS) in marine sediments

    Get PDF
    This research is focused on secondary alkane sulfonates (SAS), anionic surfactants widely used in household applications that access aquatic environments mainly via sewage discharges.We studied their sorption capacity and anaerobic degradation in marine sediments, providing the first data available on this topic. SAS partition coefficients increased towards those homologues having longer alkyl chains(from up to 141 L kg 1 for C14 to up to 1753 L kg 1 for C17), which were those less susceptible to undergo biodegradation. Overall, SAS removal percentages reached up to 98% after 166 days of incubation using anoxic sediments. The degradation pathway consisted on the formation of sulfocarboxylic acids after an initial fumarate attack of the alkyl chain and successive b-oxidations. This is the first study showing that SAS can be degraded in absence of oxygen, so this new information should be taken into account for future environmental risk assessments on these chemicals
    corecore