237 research outputs found
De novo design of protein logic gates
The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo–designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions
Forward Targeting of Toxoplasma gondii Proproteins to the Micronemes Involves Conserved Aliphatic Amino Acids
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86835/1/j.1600-0854.2011.01192.x.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/86835/2/TRA_1192_sm_t1_t7.pd
Phenotype and function of activated natural killer cells from patients with prostate cancer: patient-dependent responses to priming and IL-2 activation
Background: Although immunotherapy has emerged as the "next generation" of cancer treatments, it has not yet been shown to be successful in the treatment of patients with prostate cancer, for whom therapeutic options remain limited to radiotherapy and androgen (hormone) deprivation therapy. Previous studies have shown that priming natural killer (NK) cells isolated from healthy individuals via co-incubation with CTV-1 cells derived from an acute lymphoblastic leukemia (ALL) enhances their cytotoxicity against human DU145 (metastatic) prostate cancer cells, but it remains unknown to what extent NK cells from patients with prostate cancer can be triggered to kill. Herein, we explore the phenotype of peripheral blood NK cells in patients with prostate cancer and compare the capacity of CTV-1 cell-mediated priming and IL-2 stimulation to trigger NK cell-mediated killing of the human PC3 (metastatic) prostate cancer cell line.
Methods: The phenotype of resting, primed (co-incubation with CTV-1 cells for 17 h) and IL-2 activated (100 IU/ml IL-2 for 17 h) NK cells isolated from frozen-thawed peripheral blood mononuclear cell (PBMC) preparations from patients with benign disease (n = 6) and prostate cancer (n = 18) and their cytotoxicity against PC3 and K562 cells was determined by flow cytometry. Relationship(s) between NK cell phenotypic features and cytotoxic potential were interrogated using Spearman Rank correlation matrices.
Results and Conclusions: NK cell priming and IL-2 activation of patient-derived NK cells resulted in similar levels of cytotoxicity, but distinct NK cell phenotypes. Importantly, the capacity of priming and IL-2 stimulation to trigger cytotoxicity was patient-dependent and mutually exclusive, in that NK cells from ~50% of patients preferentially responded to priming whereas NK cells from the remaining patients preferentially responded to cytokine stimulation. In addition to providing more insight into the biology of primed and cytokine-stimulated NK cells, this study supports the use of autologous NK cell-based immunotherapies for the treatment of prostate cancer. However, our findings also indicate that patients will need to be stratified according to their potential responsiveness to individual therapeutic approaches
Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion
One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes
New directions for patient-centred care in scleroderma : the Scleroderma Patient-centred Intervention Network (SPIN)
Systemic sclerosis (SSc), or scleroderma,
is a chronic multisystem autoimmune
disorder characterised by
thickening and fibrosis of the skin and
by the involvement of internal organs
such as the lungs, kidneys, gastrointestinal
tract, and heart. Because there is
no cure, feasibly-implemented and easily
accessible evidence-based interventions
to improve health-related quality
of life (HRQoL) are needed. Due to a
lack of evidence, however, specific recommendations
have not been made
regarding non-pharmacological interventions
(e.g. behavioural/psychological,
educational, physical/occupational
therapy) to improve HRQoL in SSc. The
Scleroderma Patient-centred Intervention
Network (SPIN) was recently organised
to address this gap. SPIN is
comprised of patient representatives,
clinicians, and researchers from Canada,
the USA, and Europe. The goal
of SPIN, as described in this article, is
to develop, test, and disseminate a set
of accessible interventions designed to
complement standard care in order to
improve HRQoL outcomes in SSc.The initial organisational meeting for SPIN was funded by a Canadian Institutes of Health Research (CIHR) Meetings, Planning, and Dissemination grant to B.D. Thombs (KPE-109130), Sclerodermie Quebec, and the Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, Quebec. SPIN receives finding support from the Sclemderma Society of Ontario, the Scleroderma Society of Canada, and Sclerodermie Quebec. B.D. Thombs and M. Hudson are supported by New Investigator awards from the CIHR, and Etablissement de Jeunes Chercheurs awards from the Fonds de la Recherche en Sante Quebec (FRSQ). M. Baron is the director of the Canadian Scleroderma Research Group, which receives grant folding from the CIHR, the Scleroderma Society of Canada and its provincial chapters, Scleroderma Society of Ontario, Sclerodermie Quebec, and the Ontario Arthritis Society, and educational grants from Actelion Pharmaceuticals and Pfizer. M.D. Mayes and S. Assassi are supported by the NIH/NIAMS Scleroderma Center of Research Translation grant no. P50-AR054144. S.J. Motivala is supported by an NIH career development grant (K23 AG027860) and the UCLA Cousins Center for Psychoneuroimmunology. D. Khanna is supported by a NIH/NIAMS K23 AR053858-04) and NIH/NIAMS U01 AR057936A, the National Institutes of Health through the NIH Roadmap for Medical Research Grant (AR052177), and has served as a consultant or on speakers bureau for Actelion, BMS, Gilead, Pfizer, and United Therapeutics
Validation of the Body Concealment Scale for Scleroderma (BCSS): Replication in the Scleroderma Patient-centered Intervention Network (SPIN) Cohort
© 2016 Elsevier Ltd Body concealment is an important component of appearance distress for individuals with disfiguring conditions, including scleroderma. The objective was to replicate the validation study of the Body Concealment Scale for Scleroderma (BCSS) among 897 scleroderma patients. The factor structure of the BCSS was evaluated using confirmatory factor analysis and the Multiple-Indicator Multiple-Cause model examined differential item functioning of SWAP items for sex and age. Internal consistency reliability was assessed via Cronbach's alpha. Construct validity was assessed by comparing the BCSS with a measure of body image distress and measures of mental health and pain intensity. Results replicated the original validation study, where a bifactor model provided the best fit. The BCSS demonstrated strong internal consistency reliability and construct validity. Findings further support the BCSS as a valid measure of body concealment in scleroderma and provide new evidence that scores can be compared and combined across sexes and ages
The Circadian Response of Intrinsically Photosensitive Retinal Ganglion Cells
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental
light level to the central circadian clock and contribute to the pupil light
reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or
intrinsic (retinal) network-mediated circadian modulation during light
entrainment and phase shifting. Eleven younger persons (18–30 years) with
no ophthalmological, medical or sleep disorders participated. The activity of
the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly
using the pupil light reflex during a 24 h period of constant environmental
illumination (10 lux). Exogenous circadian cues of activity, sleep, posture,
caffeine, ambient temperature, caloric intake and ambient illumination were
controlled. Dim-light melatonin onset (DLMO) was determined from salivary
melatonin assay at hourly intervals, and participant melatonin onset values were
set to 14 h to adjust clock time to circadian time. Here we demonstrate in
humans that the ipRGC controlled post-illumination pupil response has a
circadian rhythm independent of external light cues. This circadian variation
precedes melatonin onset and the minimum ipRGC driven pupil response occurs post
melatonin onset. Outer retinal photoreceptor contributions to the inner retinal
ipRGC driven post-illumination pupil response also show circadian variation
whereas direct outer retinal cone inputs to the pupil light reflex do not,
indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells
mediate this circadian variation
Differences in stress tolerance and brood size between a non-indigenous and an indigenous gammarid in the northern Baltic Sea
Differences in stress tolerance and reproductive traits may drive the competitive hierarchy between nonindigenous and indigenous species and turn the former ones into successful invaders. In the northern Baltic Sea, the non-indigenous Gammarus tigrinus is a recent invader of littoral ecosystems and now occupies comparable ecological niches as the indigenous G. zaddachi. In laboratory experiments on specimens collected between June and August 2009 around Tva¨rminne in southern Finland (59°500N/23°150E), the tolerances towards heat stress and hypoxia were determined for the two species using lethal time, LT50, as response variable. The brood size of the two species was also studied and some observations were made on maturation of juveniles. Gammarus tigrinus was more resistant to hypoxia and survived at higher temperatures than G. zaddachi. Brood size was also greater in G. tigrinus than in G. zaddachi and G. tigrinus matured at a smaller size and earlier than G. zaddachi. Hence, there are clear competitive advantages for the non-indigenous G. tigrinus compared to the indigenous G. zaddachi, and these may be further strengthened through ongoing environmental changes related to increased eutrophication and a warming climate in the Baltic Sea region
Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease
\ua9 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations
- …