8,742 research outputs found

    SERS Application for Analysis of Live Single Cell

    Get PDF
    Monitoring changes of the protein contents and other macromolecules inside a living single cell during the key cellular processes such as cell differentiation, division, and apoptosis is a challenge for researchers. Raman spectroscopy is a powerful analytical technique for several biomedical applications that is rapid, reagent-free, and non-destructive while limited application with its weak signal. Surface-enhanced Raman scattering (SERS) technique is widely used to enhance the Raman signal (109-15 fold) by using surface Plasmon resonance of noble metal nanostructures (e.g. silver, gold, copper). SERS is a non-destructive spectroscopic method applied for biomedical samples. In this chapter, we will discuss the principles and fundamentals of SERS technique, theories and different strategies to obtain SERS signals such as immobilization of metal colloids on a substrate. Also, we show the SERS applications including the identification and discrimination of different types of cells (healthy and nonhealthy cells, e.g., cancer cells), and the interaction of cells with different drugs will also be discussed on monolayer bulk cells as well as on single-cell basis and for stem cell differentiation. In addition, we show the coupling of SERS with electrochemical techniques (EC-SERS) as spectroelectrochemical technique and its applications in biology, bioanalytical, and life science

    Examining Dense Data Usage near the Regions with Severe Storms in All-Sky Microwave Radiance Data Assimilation and Impacts on GEOS Hurricane Analyses

    Get PDF
    Many numerical weather prediction (NWP) centers assimilate radiances affected by clouds and precipitation from microwave sensors, with the expectation that these data can provide critical constraints on meteorological parameters in dynamically sensitive regions to make significant impacts on forecast accuracy for precipitation. The Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center assimilates all-sky microwave radiance data from various microwave sensors such as all-sky GPM Microwave Imager (GMI) radiance in the Goddard Earth Observing System (GEOS) atmospheric data assimilation system (ADAS), which includes the GEOS atmospheric model, the Gridpoint Statistical Interpolation (GSI) atmospheric analysis system, and the Goddard Aerosol Assimilation System (GAAS). So far, most of NWP centers apply same large data thinning distances, that are used in clear-sky radiance data to avoid correlated observation errors, to all-sky microwave radiance data. For example, NASA GMAO is applying 145 km thinning distances for most of satellite radiance data including microwave radiance data in which all-sky approach is implemented. Even with these coarse observation data usage in all-sky assimilation approach, noticeable positive impacts from all-sky microwave data on hurricane track forecasts were identified in GEOS-5 system. The motivation of this study is based on the dynamic thinning distance method developed in our all-sky framework to use of denser data in cloudy and precipitating regions due to relatively small spatial correlations of observation errors. To investigate the benefits of all-sky microwave radiance on hurricane forecasts, several hurricane cases selected between 2016-2017 are examined. The dynamic thinning distance method is utilized in our all-sky approach to understand the sources and mechanisms to explain the benefits of all-sky microwave radiance data from various microwave radiance sensors like Advanced Microwave Sounder Unit (AMSU-A), Microwave Humidity Sounder (MHS), and GMI on GEOS-5 analyses and forecasts of various hurricanes

    All-Sky Microwave Imager Data Assimilation at NASA GMAO

    Get PDF
    Efforts in all-sky satellite data assimilation at the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center have been focused on the development of GSI configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) and Global Change Observation Mission-Water (GCOM-W) Advanced Microwave Scanning Radiometer 2 (AMSR-2). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be relatively transparent to atmospheric gases and thin ice clouds, and highly sensitive to precipitation. Therefore, GMAOs all-sky data assimilation efforts are primarily focused on utilizing these data in precipitating regions. The all-sky framework being tested at GMAO employs the GSI in a hybrid 4D-EnVar configuration of the Goddard Earth Observing System (GEOS) data assimilation system, which will be included in the next formal update of GEOS. This article provides an overview of the development of all-sky radiance assimilation in GEOS, including some performance metrics. In addition, various projects underway at GMAO designed to enhance the all-sky implementation will be introduced

    Assimilating All-Sky Microwave Radiance Data to Improve NASA GEOS Forecasts and Analysis

    Get PDF
    The NASA Global Modeling and Assimilation Office (GMAO) has been pursuing efforts to utilize all-sky (clear+cloudy+precipitating) MW radiance data and has developed a system to assimilate all-sky GPM Microwave Imager (GMI) radiance data in the Goddard Earth Observing System (GEOS) during the last PMM funding period. The system provides additional constraints on the analysis process near the storm regions and adjusts the geophysical parameters such as precipitation, cloud, moisture, surface pressure, and wind by combining information from GMI radiance measurements and model forecasts in an optimal manner. The system proved that assimilating the GMI all-sky radiance data improve the GEOS atmospheric analyses and forecasts. This all-sky data framework has been included in the GEOS Forward Processing (FP) system since July 11, 2018 and assimilates all-sky GMI data in real-time for GEOS global analysis and forecast production at the GMAO. We are currently extending this all-sky GMI radiance data assimilation system to assimilate more all-sky MW radiance data from other sensors such as the Microwave Humidity Sounder (MHS), the Advanced Technology Microwave Sounder (ATMS), the Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Sounder for Atmospheric Profiling of Humidity in the Intertropics by Radiometery (SAPHIR) onboard the GPM constellation spacecrafts. Preliminary results from this extended all-sky system show increased benefit from cloud- and precipitation-affected MW radiances with much larger spatial and temporal coverages compared to the all-sky system assimilating GMI alone and improved GEOS forecast skills especially for lower tropospheric humidity fields

    Clear Cell Hidradenoma of the Axilla: a Case Report with Literature Review

    Get PDF
    Clear cell hidradenoma is an uncommon benign skin appendageal tumor that typically involves the dermal layer of the head, face, and extremities. The breast is a rare site for this lesion, with only two documented cases, which were determined based on mammogram and sonogram findings. We present a case of clear cell hidradenoma of the axillary tail with radiological findings and a literature review

    Treatment of an Acute Mycotic Aneurysm of the Common Carotid Artery with a Covered Stent-Graft

    Get PDF
    We report herein a case successful endovascular treatment with a stent-graft of a rare case of rapidly growing mycotic aneurysm of the left common carotid artery due to acute bacterial endocarditis after eradication of the infection. Infected mycotic aneurysms of the peripheral vasculature have been considered as a contraindication for stent-graft implantation because of the possibility of microorganism spreading to the stent-graft; however, if there is evidence of complete eradication of microorganism and surgery is not an option, stent-graft implantation can be an effective and safe treatment modality for exclusion of the mycotic aneurysm

    Ethyl 4-[2-(3,5-dimethyl-4-oxo-2,6-diphenyl­piperidin-1-yl)-2-oxoeth­yl]piperazine-1-carboxyl­ate

    Get PDF
    In the title compound, C28H35N3O4, the piperidine ring adopts a boat conformation while the piperazine ring adopts a chair conformation with an equatorial orientation of the phenyl groups. The dihedral angle between the mean planes of the benzene rings is 74.14 (8)°. The mol­ecular conformation is stabilized by a weak intra­molecular C—H⋯N inter­action and the crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions
    corecore