304 research outputs found

    Nontrivial dependence of dielectric stiffness and SHG on dc bias in relaxors and dipole glasses

    Full text link
    Dielectric permittivity and Second Harmonic Generation (SHG) studies in the field-cooled mode show a linear dependence of dielectric stiffness (inverse dielectric permittivity) on dc bias in PMN-PT crystals and SHG intensity in KTaO3_{3}:Li at small Li concentrations. We explain this unusual result in the framework of a theory of transverse, hydrodynamic-type, instability of local polarization.Comment: 5 figure

    Morpho-Anatomical, Physiological, and Mineral Composition Responses Induced by a Vegetal-Based Biostimulant at Three Rates of Foliar Application in Greenhouse Lettuce

    Get PDF
    A promising strategy for sustainably increasing the quality and yield of horticultural products is the use of natural plant biostimulants. In this work, through a greenhouse experiment, we evaluated the effect of a legume-derived biostimulant at three dose treatments (0.0 control, 2.5 mL L−1, and 5.0 mL L−1) on the yield performance, nutrients traits, leaf anatomical traits, gas exchanges, and carbon photosynthetic assimilation of greenhouse lettuce. The lettuce plants were foliar sprayed every 7 days for 5 weeks. The application of plant biostimulant, at both lower and higher dosages, increased the nutrient use efficiency, root dry weight, and leaf area. However, it is noteworthy that the 5.0 mL L−1 dose enhanced photosynthetic activity in the early phase of growth (15 DAT), thus supplying carbon skeletons useful for increasing the number of leaves and their efficiency (higher SPAD), and for boosting nutrient uptake (P, S, and K) and transport to leaves, while the 2.5 mL L−1 dose exerted specific effects on roots, increasing their dimension and enabling them to better use nitrate and Ca. A higher dose of biostimulant application might find its way in shorter growing cycle, thus presenting new horizons for new lines of research in baby leaves production

    Intraspecific variability largely affects the leaf metabolomics response to isosmotic macrocation variations in two divergent lettuce (Lactuca sativa L.) varieties

    Get PDF
    Mineral elements are essential for plant growth and development and strongly affect crop yield and quality. To cope with an everchanging environment, plants have developed specific responses to combined nutrient variations. In this work, we investigated the effects of multifactorial treatments with three macrocations (K, Ca, and Mg) on lettuce (Lactuca sativa L.) varieties that strongly diverge in leaf pigmentation (full red or green). Specifically, we monitored main leaf parameters and metabolomics profiles of hydroponically grown plants fed with isosmotic nutrient solutions that have different proportions of macroelements. The result revealed a high biochemical plasticity of lettuce, significantly affected by the genotype, the nutrient solution, and their interaction. Our work also provided evidence and insights into the different intraspecific responses to multifactorial variation of macrocations, with two varieties having distinct strategies to metabolically respond to nutrient variation. Overall, plant adaptive mechanisms increased the phytochemical diversity between the varieties both among and within the main classes of plant secondary metabolites. Finally, our work also implies that the interaction of a pre-existing phytochemical diversity with the management of multiple mineral elements can offer added health-related benefits to the edible product specific to the variety

    Sweet basil functional quality as shaped by genotype and macronutrient concentration reciprocal action

    Get PDF
    Basil (Ocimum basilicum L.) is among the most widespread aromatic plants due to its versatility of use and its beneficial health properties. This aromatic plant thrives in hydroponics, which is a valid tool to improve the production and functional quality of crops, but nevertheless, it offers the possibility to de-seasonalize production. A floating raft system was adopted to test the production and quality potential during autumn season of three different genotypes of Genovese basil (Aroma 2, Eleonora and Italiano Classico) grown in three nutrient solutions with crescent electrical conductivity (EC: 1, 2 and 3 dS m−1). The aromatic and phenolic profiles were determined by GC/MS and HPLC analysis, respectively. The combination Aroma 2 and the EC 2 dS m−1 resulted in the highest production, both in terms of fresh weight and dry biomass. The 2 dS m−1 treatment determined the major phenolic content, 44%, compared to the other two EC. Italiano Classico showed a higher total polyphenolic content in addition to a different aromatic profile compared to the other cultivars, characterized by a higher percentage of Eucalyptol (+37%) and Eugenol (+107%) and a lower percentage of linalool (−44%). Correct management of the nutritional solution combined with adequate genetic material managed an improvement in the production and the obtainment of the desired aromatic and phenolic profiles

    Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach

    Get PDF
    Plant-derived protein hydrolysates (PHs) are gaining prominence as biostimulants due to their potential to improve yield and nutritional quality even under suboptimal nutrient regimens. In this study, we investigated the effects of foliar application of a legume-derived PH (0 or 4 ml L−1) on greenhouse baby spinach (Spinacia oleracea L.) under four nitrogen (N) fertilization levels (0, 15, 30, or 45 kg ha−1) by evaluating morphological and colorimetric parameters, mineral composition, carbohydrates, proteins, and amino acids. The fresh yield in untreated and biostimulant-treated spinach plants increased in response to an increase in N fertilization from 1 up to 30 kg ha−1, reaching a plateau thereafter indicating the luxury consumption of N at 45 kg ha−1. Increasing N fertilization rate, independently of PH, lead to a significant increase of all amino acids with the exception of alanine, GABA, leucine, lysine, methionine, and ornithine but decreased the polyphenols content. Interestingly, the fresh yield at 0 and 15 kg ha−1 was clearly greater in PH-treated plants compared to untreated plants by 33.3% and 24.9%, respectively. This was associated with the presence in of amino acids and small peptides PH ‘Trainer®’, which act as signaling molecules eliciting auxin- and/or gibberellin-like activities on both leaves and roots and thus inducing a “nutrient acquisition response” that enhances nutrients acquisition and assimilation (high P, Ca, and Mg accumulation) as well as an increase in the photochemical efficiency and activity of photosystem II (higher SPAD index). Foliar applications of the commercial PH decreased the polyphenols content, but on the other hand strongly increased total amino acid content (+45%, +82%, and +59% at 0, 15, and 30 kg ha−1, respectively) but not at a 45-kg ha−1-rate. Overall, the use of PH could represent a sustainable tool for boosting yield and nitrogen use efficiency and coping with soil fertility problems under low input regimens

    Plant-Derived Biostimulants Differentially Modulate Primary and Secondary Metabolites and Improve the Yield Potential of Red and Green Lettuce Cultivars

    Get PDF
    The use of biostimulants in modern agriculture has rapidly expanded in recent years, owing to their beneficial effects on crop yield and product quality, which have come under the scope of intensive research. Accordingly, in the present study we appraised the efficacy of two plantderived biostimulants, the legume-derived protein hydrolysates Trainer®® (PH), and the tropical plant extract Auxym®® (TPE) on two lettuce cultivars (green and red salanova®®) in terms of morpho-physiological and biochemical traits (primary and secondary metabolites). The two cultivars differed in their acquisition capacity for nitrate and other beneficial ions, their photosynthetic and transpiration rates, and their ability to synthetize and accumulate organic acids and protective metabolites. The biostimulant effect was significant for almost all the parameters examined but it was subjected to significant cultivar × biostimulant interactions, denoting a cultivardependent response to biostimulant type. Notwithstanding this interaction, biostimulant application could potentially improve the yield and quality of lettuce by stimulating plant physiological processes, as indicated by the SPAD index (leaf chlorophyll index), ACO2 (assimilation rate), E (transpiration), and WUEi (intrinsic water use efficiency), and by increasing concurrently the plant mineral content (total N, K, Ca, Mg) and the biosynthesis of organic acids (malate, citrate), phenols (caffeic acid, coumaroyl quinic acid isomer 1, dicaffeoylquinic acid isomer 1), and flavonoids (quercetin-3-O-glucuronide, quercetin-3-O-glucoside). Biostimulant action may facilitate the bio-enhancement of certain lettuce cultivars that are otherwise limited by their genetic potential, for the accumulation of specific compounds beneficial to human health

    Some rootstocks improve pepper tolerance to mild salinity through ionic regulation

    Get PDF
    [EN] Grafting has been proposed as an interesting strategy that improves the responses of crops under salinity. In pepper, we reported increased fruit yield of the commercial 'Adige' cultivar under salinity when grafted onto accessions Capsicum chinense Jacq. 'ECU-973' (12) and Capsicum baccatum L. var. pendulum 'BOL-58' (14), whereas no,effect was observed when grafted onto accession Capsicum annuum L var. 'Serrano' (5). We also analysed the physiological and biochemical mechanisms related to the tolerance conferred by these rootstocks. Responses to salinity (40 mM NaCl) were studied in the different plant combinations for 30 days by determining water relations, mineral content, proline accumulation, photosynthetic parameters, nitrate reductase activity and antioxidant capacity. Higher salt tolerance was achieved when the 'Adige' cultivar was grafted onto the 12 genotype, which allowed not only lower Na+ and Cl- accumulation in the scion, but also ion selectivity maintenance, particularly Na+/K+ discrimination. These traits led to a minor negative impact on photosynthesis, nitrate reductase activity and lipid peroxidation in grafted scion leaves. This work suggests that using tolerant pepper rootstocks that maintain the scion's ion homeostasis is a promising strategy to provide salinity tolerance and can consequently improve crop yield.This work has been financed by INIA (Spain) through Project RTA2010-00038-C03-01 and the European Regional Development Fund (ERDF). C.P. is beneficiary of a doctoral fellowship (FPI-INIA) associate with this project.Penella, C.; González Nebauer, S.; Quinones, A.; San Bautista Primo, A.; López Galarza, SV.; Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science. 230:12-22. doi:10.1016/j.plantsci.2014.10.007S122223

    Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions

    Full text link
    [EN] Water is an essential resource for food production, as agriculture consumes close to 70% of the total freshwater, and its shortage is becoming critical in arid and semiarid areas of the world. Therefore, it is important to use water more efficiently. The objectives of this project are to determine the productive response and the irrigation water use efficiency of seedless watermelon to three irrigation management strategies over two growing seasons. This was done by applying 100, 75 and 50% of the irrigation water requirements (IWR) the first year, in the second year added six additional treatments, of which three treatments were regulated deficit irrigation with 75% IWR during the vegetative growth, fruit development and fruit ripening stages, and the other three treatments were with 50% IWR during the same stages. The exposure of watermelon plants to severe deficit irrigation resulted in a reduction in dry biomass, total and marketable yield, average fruit weight, fruit number and harvest index, and without improvement of marketable fruit quality. The fruit ripening was the less sensitive stage to water deficits. Relative water content and cell membrane stability index decreased as the water deficit increased. Irrigation water use efficiency decreased to a lesser extend during the fruit ripening stage than when water restriction were applied during different growth stages. If water is readily available, irrigating with 100% of water requirements is recommended, but in the case of water scarcity, applying water shortage during fruit ripening stage would be advisable.Abdelkhalik, A.; Pascual-Seva, N.; Nájera, I.; Giner, A.; Baixauli Soria, C.; Pascual España, B. (2019). Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agricultural Water Management. 212:99-110. https://doi.org/10.1016/j.agwat.2018.08.0449911021
    corecore