1,007 research outputs found

    Compound wind and rainfall extremes: Drivers and future changes over the UK and Ireland

    Get PDF
    \ua9 2024The co-occurrence of wind and rainfall extremes can yield larger impacts than when either hazard occurs in isolation. This study assesses compound extremes produced by Extra-tropical cyclones (ETCs) during winter from two perspectives. Firstly, we assess ETCs with extreme footprints of wind and rainfall; footprint severity is measured using the wind severity index (WSI) and rain severity index (RSI) which account for the intensity, duration, and area of either hazard. Secondly, we assess local co-occurrences of 6-hourly wind and rainfall extremes within ETCs. We quantify the likelihood of compound extremes in these two perspectives and characterise a number of their drivers (jet stream, cyclone tracks, and fronts) in control (1981–2000) and future (2060–2081, RCP8.5) climate simulations from a 12-member ensemble of local convection-permitting 2.2 km climate projections over the UK and Ireland. Simulations indicate an increased probability of ETCs producing extremely severe WSI and RSI in the same storm in the future, occurring 3.6 times more frequently (every 5 years compared to every 18 years in the control). This frequency increase is mainly driven by increased rainfall intensities, pointing to a predominantly thermodynamic driver. However, future winds also increase alongside a strengthened jet stream, while a southward displaced jet and cyclone track in these events leads to a dynamically-enhanced increase in temperature. This intensifies rainfall in line with Clausius-Clapeyron, and potentially wind speeds due to additional latent heat energy. Future simulations also indicate an increase in the land area experiencing locally co-occurring wind and rainfall extremes; largely explained by increased rainfall within warm and cold fronts, although the relative increase is highest near cold fronts suggesting increased convective activity. These locally co-occurring extremes are more likely in storms with severe WSI and RSI, but not exclusively so as local co-occurrence requires the coincidence of separate drivers within ETCs. Overall, our results reveal many contributing factors to compound wind and rainfall extremes and their future changes. Further work is needed to understand the uncertainty in the future response by sampling additional climate models

    Capoeira for beginners: self-benefit for, and community action by, new Capoeiristas

    Get PDF
    Capoeira could be defined as a Brazilian martial art and game to be played. This research explored how capoeira play might be considered to facilitate connectedness amongst newly-recruited persons, plus any other ramifications of capoeira involvement. A beginners’ course of capoeira was provided to participants, free of charge, in an English city in the West Midlands—new capoeiristas in a new venue for capoeira. Researchers attended classes to collect/construct overt non-participant observation data. In addition, semi-structured interviews were undertaken with the new capoeiristas post-course. This article explores researchers’ observation fieldnotes and interviewees’ narratives. These qualitative data-driven debates include the concepts: self, identity, escapism, multiparty endeavour, community, temporality, enjoyment, and transcending boundaries. Capoeira is theorised in a fresh manner that highlights social benefits of capoeira—for example as an enjoyable and supportive group endeavour which includes elements of social play and community-building—plus benefits for self that can transcend the boundaries of the class. Findings highlight how capoeira can be considered an inherently multiparty endeavour whereby social actors form, and experience, a community in order to embrace capoeira play. Data suggest capoeira can facilitate group playfulness, joviality, and laughter. Further, capoeiristas can enact and experience—some mode of—escapism via capoeira, whereby new place and pursuit can facilitate hedonistic diversion from the mundane. Capoeira appears to provide adventure and liberation into a relatively unburdened part of, or place in, social life. Corporeal and discursive boundary-empowerment can also be experienced by capoeiristas, fostering positive identity work in the wider world. Capoeira can be argued to facilitate mutuality (e.g. community experience and group work) and egoism (e.g. an individual's identity work) concurrently. This research suggests that modified capoeira for beginners can be beneficial for both the new capoeiristas themselves and for positive community action during and beyond class

    Overlap in signaling between Smoothened and the α subunit of the heterotrimeric G protein G₁₃

    Get PDF
    The Hedgehog family of morphogens has long been known to utilize, through the 7-transmembrane protein Smoothened (Smo), the heterotrimeric G protein Gi in both canonical and noncanonical forms of signaling. Other G proteins, while not specifically utilized by Smo, may nonetheless provide access to some of the events controlled by it. We reported several years ago that the G protein G₁₃ activates one or more forms of the Gli family of transcription factors. While the Gli transcription factors are well known targets for Smo, the uncertain mechanism of activation by G₁₃ and the identity of the targeted Gli(s) limited predictions as to the extent to which G₁₃ might mimic Smo’s actions. We evaluate here the potential for overlap in G₁₃ and Smo signaling using C3H10T1/2 and 3T3-L1 cells as models of osteogenesis and adipogenesis, respectively. We find in C3H10T1/2 cells that a constitutively active form of Gα₁₃ (Gα₁₃QL) increases Gli1 mRNA, as does a constitutively active form of Smo (SmoA1). We find as well that Gα₁₃QL induces alkaline phosphatase activity, a marker of osteogenesis, albeit the induction is far less substantial than that achieved by SmoA1. In 3T3-L1 cells both Gα₁₃QL and SmoA1 markedly suppress adipogenic differentiation as determined by triglyceride accumulation. RNA sequencing reveals that Gα₁₃QL and SmoA1 regulate many of the same genes but that quantitative and qualitative differences exist. Differences also exist, we find, between SmoA1 and purmorphamine, an agonist for Smo. Therefore, while comparisons of constitutively active proteins are informative, extrapolations to the setting of agonists require care

    Compound wind and rainfall extremes: Drivers and future changes over the UK and Ireland

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Elsevier via the DOI in this recordData availability: Wind and rainfall data is freely available. Other data can be made available upon reasonable request.The co-occurrence of wind and rainfall extremes can yield larger impacts than when either hazard occurs in isolation. This study assesses compound extremes produced by Extra-tropical cyclones (ETCs) during winter from two perspectives. Firstly, we assess ETCs with extreme footprints of wind and rainfall; footprint severity is measured using the wind severity index (WSI) and rain severity index (RSI) which account for the intensity, duration, and area of either hazard. Secondly, we assess local co-occurrences of 6-hourly wind and rainfall extremes within ETCs. We quantify the likelihood of compound extremes in these two perspectives and characterise a number of their drivers (jet stream, cyclone tracks, and fronts) in control (1981-2000) and future (2060-2081, RCP8.5) climate simulations from a 12-member ensemble of local convection-permitting 2.2 km climate projections over the UK and Ireland. Simulations indicate an increased probability of ETCs producing extremely severe WSI and RSI in the same storm in the future, occurring 3.6 times more frequently (every 5 years compared to every 18 years in the control). This frequency increase is mainly driven by increased rainfall intensities, pointing to a predominantly thermodynamic driver. However, future winds also increase alongside a strengthened jet stream, while a southward displaced jet and cyclone track in these events leads to a dynamically-enhanced increase in temperature. This intensifies rainfall in line with Clausius-Clapeyron, and potentially wind speeds due to additional latent heat energy. Future simulations also indicate an increase in the land area experiencing locally co-occurring wind and rainfall extremes; largely explained by increased rainfall within warm and cold fronts, although the relative increase is highest near cold fronts suggesting increased convective activity. These locally co-occurring extremes are more likely in storms with severe WSI and RSI, but not exclusively so as local co-occurrence requires the coincidence of separate drivers within ETCs. Overall, our results reveal many contributing factors to compound wind and rainfall extremes and their future changes. Further work is needed to understand the uncertainty in the future response by sampling additional climate models.Natural Environment Research Council (NERC)Joint UK BEIS/Defra Hadley Centre Climate ProgrammeEuropean Union Horizon 202

    What More Do Bodies Know? Moving with the Gendered Affects of Place

    Get PDF
    This article focuses on what bodies know yet which cannot be expressed verbally. It starts with a problem encountered during conventional interviewing in an ex-mining community in south Wales when some teen girls struggled to speak. This led us to focus on the body, corporeality and movement in improvisational dance workshops. By slowing down and speeding up video footage from the workshops, we notice movement patterns and speculate about how traces of gendered body-movement practices developed within mining communities over time become actualised in girls’ habitual movement repertoires. Inspired by the works of Gilles Deleuze, Felix Guattari and Erin Manning, a series of cameos (room dancing; the hold; the wiggle; the leap and dance of the not-yet) are presented. We speculate about relations between the actual movements we could see, the in-act infused with the history of place and the virtual potential of what movement

    Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions

    Get PDF
    Background: Cytosine methylation in plant genomes is important for the regulation of gene transcription and transposon activity. Genome-wide methylomes are studied upon mutation of the DNA methyltransferases, adaptation to environmental stresses or during development. However, from basic biology to breeding programs, there is a need to monitor multiple samples to determine transgenerational methylation inheritance or differential cytosine methylation. Methylome data obtained by sodium hydrogen sulfite (bisulfite)-conversion and next-generation sequencing (NGS) provide genome- wide information on cytosine methylation. However, a profiling method that detects cytosine methylation state dispersed over the genome would allow high-throughput analysis of multiple plant samples with distinct epigenetic signatures. We use specific restriction endonucleases to enrich for cytosine coverage in a bisulfite and NGS-based profiling method, which was compared to whole-genome bisulfite sequencing of the same plant material. Methods: We established an effective methylome profiling method in plants, termed plant-reduced representation bisulfite sequencing (plant-RRBS), using optimized double restriction endonuclease digestion, fragment end repair, adapter ligation, followed by bisulfite conversion, PCR amplification and NGS. We report a performant laboratory protocol and a straightforward bioinformatics data analysis pipeline for plant-RRBS, applicable for any reference-sequenced plant species. Results: As a proof of concept, methylome profiling was performed using an Oryza sativa ssp. indica pure breeding line and a derived epigenetically altered line (epiline). Plant-RRBS detects methylation levels at tens of millions of cytosine positions deduced from bisulfite conversion in multiple samples. To evaluate the method, the coverage of cytosine positions, the intra-line similarity and the differential cytosine methylation levels between the pure breeding line and the epiline were determined. Plant-RRBS reproducibly covers commonly up to one fourth of the cytosine positions in the rice genome when using MspI-DpnII within a group of five biological replicates of a line. The method predominantly detects cytosine methylation in putative promoter regions and not-annotated regions in rice. Conclusions: Plant-RRBS offers high-throughput and broad, genome- dispersed methylation detection by effective read number generation obtained from reproducibly covered genome fractions using optimized endonuclease combinations, facilitating comparative analyses of multi-sample studies for cytosine methylation and transgenerational stability in experimental material and plant breeding populations

    Pattern Spectra from Different Component Trees for Estimating Soil Size Distribution

    Get PDF
    We study the pattern spectra in context of soil structure analysis. Good soil structure is vital for sustainable crop growth. Accurate and fast measuring methods can contribute greatly to soil management decisions. However, the current in-field approaches contain a degree of subjectivity, while obtaining quantifiable results through laboratory techniques typically involves sieving the soil which is labour- and time-intensive. We aim to replace this physical sieving process through image analysis, and investigate the effectiveness of pattern spectra to capture the size distribution of the soil aggregates. We calculate the pattern spectra from partitioning hierarchies in addition to the traditional max-tree. The study is posed as an image retrieval problem, and confirms the ability of pattern spectra and suitability of different partitioning trees to re-identify soil samples in different arrangements and scales

    Identifying Critical Non-Catalytic Residues that Modulate Protein Kinase A Activity

    Get PDF
    Distal interactions between discrete elements of an enzyme are critical for communication and ultimately for regulation. However, identifying the components of such interactions has remained elusive due to the delicate nature of these contacts. Protein kinases are a prime example of an enzyme with multiple regulatory sites that are spatially separate, yet communicate extensively for tight regulation of activity. Kinase misregulation has been directly linked to a variety of cancers, underscoring the necessity for understanding intramolecular kinase regulation.A genetic screen was developed to identify suppressor mutations that restored catalytic activity in vivo from two kinase-dead Protein Kinase A mutants in S. cerevisiae. The residues defined by the suppressors provide new insights into kinase regulation. Many of the acquired mutations were distal to the nucleotide binding pocket, highlighting the relationship of spatially dispersed residues in regulation.The suppressor residues provide new insights into kinase regulation, including allosteric effects on catalytic elements and altered protein-protein interactions. The suppressor mutations identified in this study also share overlap with mutations identified from an identical screen in the yeast PKA homolog Tpk2, demonstrating functional conservation for some residues. Some mutations were independently isolated several times at the same sites. These sites are in agreement with sites previously identified from multiple cancer data sets as areas where acquired somatic mutations led to cancer progression and drug resistance. This method provides a valuable tool for identifying residues involved in kinase activity and for studying kinase misregulation in disease states

    Requirement of CHROMOMETHYLASE3 for somatic inheritance of the spontaneous tomato epimutation Colourless non-ripening

    Get PDF
    Naturally-occurring epimutants are rare and have mainly been described in plants. However how these mutants maintain their epigenetic marks and how they are inherited remain unknown. Here we report that CHROMOMETHYLASE3 (SlCMT3) and other methyltransferases are required for maintenance of a spontaneous epimutation and its cognate Colourless non-ripening (Cnr) phenotype in tomato. We screened a series of DNA methylation-related genes that could rescue the hypermethylated Cnr mutant. Silencing of the developmentally-regulated SlCMT3 gene results in increased expression of LeSPL-CNR, the gene encodes the SBP-box transcription factor residing at the Cnr locus and triggers Cnr fruits to ripen normally. Expression of other key ripening-genes was also up-regulated. Targeted and whole-genome bisulfite sequencing showed that the induced ripening of Cnr fruits is associated with reduction of methylation at CHG sites in a 286-bp region of the LeSPL-CNR promoter, and a decrease of DNA methylation in differentially-methylated regions associated with the LeMADS-RIN binding sites. Our results indicate that there is likely a concerted effect of different ethyltransferases at the Cnr locus and the plant-specific SlCMT3 is essential for sustaining Cnr epi-allele. Maintenance of DNA methylation dynamics is critical for the somatic stability of Cnr epimutation and for the inheritance of tomato non-ripening phenotype
    corecore