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Abstract. We study the pattern spectra in context of soil structure
analysis. Good soil structure is vital for sustainable crop growth. Accu-
rate and fast measuring methods can contribute greatly to soil manage-
ment decisions. However, the current in-field approaches contain a degree
of subjectivity, while obtaining quantifiable results through laboratory
techniques typically involves sieving the soil which is labour- and time-
intensive. We aim to replace this physical sieving process through image
analysis, and investigate the effectiveness of pattern spectra to capture
the size distribution of the soil aggregates. We calculate the pattern spec-
tra from partitioning hierarchies in addition to the traditional max-tree.
The study is posed as an image retrieval problem, and confirms the abil-
ity of pattern spectra and suitability of different partitioning trees to
re-identify soil samples in different arrangements and scales.

Keywords: pattern spectra · inclusion trees · partitioning trees · soil
structure

1 Introduction and Motivation

Soil structure concerns the arrangement of soil aggregates to provide an environ-
ment to facilitate good access to water, air and nutrients, and a suitable medium
for root development [6]. Good soil structure is fundamental to sustainable crop
growth, and can contribute to reducing the environmental impact of agriculture.
Hence, robust and accurate methods to measure soil structure are important
tools for informing soil management decisions.

A range of methods is available to assess soil structure, from in-field visual
investigations [19, 13], to lab-based assessments of soil aggregates and structure
[1], both with their individual merits and drawbacks. Field-based methods can
provide a rapid ‘by eye’ assessment by field practitioners, but as such rely on
some degree of subjectivity, limiting the reliability of comparison between dif-
ferent users. Conversely, laboratory techniques produce a quantifiable result for
comparison of soil structure, but these methods tend to be time-consuming and
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labour-intensive. Developments in image analysis of soil aggregate distribution
could provide a solution to some of these limitations, either by providing quan-
tifiable, and comparable, units to in-field visual assessments, or by speeding up
the laboratory process through replacement of manual sieving.

The laboratory techniques quantify the soil structure in terms of ratios of
soil aggregates of certain sizes in the soil. In order to separate aggregates of
different sizes, a stack of sieves of decreasing weight sizes is used. The residue in
each sieve is then measured in terms of aggregate volume or mass, and used to
categorise the soil into 5 categories ranging from friable (Sq1) to very compact
(Sq5) according to the VESS (Visual Evaluation of Soil Structure) methodology.
This physical process closely matches the algorithmic process of pattern spectra
[15] where the image is filtered with a succession of openings of increasing sizes,
often described as sieving. They can be calculated from a granulometry [16,
5], where efficiency is achieved using a hierarchy such as a max-tree [22]. The
amounts of image content removed by each attribute filter are used as global
[25] or region descriptors [3]. We investigate the pattern spectra calculated on
both inclusion trees, which are extrema-oriented, and partitioning trees, which
capture intermediate level regions, and confirm their suitability for characterising
soil structure through evaluation on an image retrieval problem.

In the next section, we outline the related literature on applying image pro-
cessing and morphological techniques to calculate particle size distribution in
soil and similar materials. The methodology for calculating the pattern spec-
tra, as well as the different component trees used, are explained in Sec. 3. The
dataset, collected by the authors for the study, is presented in Sec. 4. We elab-
orate our experiments and results in Sec. 5, and conclude in Sec. 6, outlining
future directions of interest.

2 Related Work

Some of the earliest image processing techniques applied to estimation of aggre-
gate size distribution focused on segmenting images of non-overlapping coarse ag-
gregates (3 mm to 63 mm) [18]. Several segmentation-based techniques for work-
ing with overlapping particles of coarse-grained sediments, including those based
on top-hat and watershed segmentation, are described in [12]. Size distribution
of overlapping particles of coarse sands and gravel (0.7 mm to 20 mm) has also
been analysed through statistical image properties [7], and correlated to sam-
ple distribution through regression over the images in a “look-up catalogue”. In
summary, these approaches are limited to cases of no to little particle overlap
and samples comprising large aggregates, with further drawbacks including the
reliance on segmenting the image into individual particles or a catalogue.

Granulometry [16], followed by pattern spectra [15], is one of the earliest
morphological operations, and was developed as a tool for scale (size) and shape
analysis of image content, with some of the earliest applications in petrography
(studying the grain structure of rocks). Pattern spectra through opening and
closing with reconstruction were used for the granulometric analysis of estuarine
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and marine sediments [11], as well as soil section images [10] (also including
spectra based on area openings), however both applications focus on samples
with mostly non-overlapping aggregates.

Pattern spectra based on area openings calculated on a max-tree were used to
produce accurate grain size distributions of sands (smallest reported particle size
0.06 mm) [20]. Image granulometry is also discussed in the context of estimating
the size distribution of stone fragments [21]. A recent study compares pattern
spectra based on different structuring elements as well as area openings, closings
and their combination for assessment of grain size for fine and coarse aggregates
of sands and pebbles (0.125 mm to 16 mm) [2], obtaining the best results through
attribute morphology. The mean grain size was estimated through regression on
the training samples, by assuming a quadratic relation between measured grain
size and image granulometry. The image granulometry was also related to the
measured weight distribution of the samples. However, this work was validated
on prepared samples with predetermined uniform grain size distribution, while
processing partial images of very large samples (170 kg of soil).

We study the effectiveness of size pattern spectra in distinguishing soils in
terms of their structure, i.e. soil aggregate distribution, posed as an image re-
trieval problem. The sample sizes used in our experiments are much smaller than
those used in previous work (400 g samples, cf. Sec.4 compared to 170 kg [2]),
aiming at the eventual application of the technique to freshly dug samples on
site. The image acquisition setup allows us to examine the effectiveness of this
approach for cases of completely to partially overlapping or touching aggregates,
which have not been examined before in the same study. We compare using 5
different component trees for pattern spectra calculation, including both inclu-
sion [22, 17] and partitioning hierarchies [23, 24]. We propose to calculate the
pattern spectra on partitioning trees by relying on the filtering rules outlined
in [4]. Additionally, we investigate the influence of three different measures for
defining a granulometry outlined in [8].

3 Methodology

In this section, we recall the concepts of granulometry and pattern spectra as
well as attribute filtering, followed by a short overview of the component trees
used in the study.

3.1 Granulometries and Pattern Spectra

Both granulometries [16] and pattern spectra [15] rely on openings and closings,
and are used to capture the information on the distribution of image component
sizes (later extended to shape [26, 25]). While granulometries can be seen as size
distributions of images, pattern spectra are the corresponding size histograms.
When implemented through attribute filters, they interact directly with con-
nected components of the image instead of pixels.
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Fig. 1. The three different inclusion trees of a toy image (a). The min-tree is displayed
in (b), while its dual max-tree is shown in (c). The self-dual tree of shapes is shown in
(d). The (gray) levels of the nodes are displayed in the nodes, and the corresponding
regions are shown beside the nodes.

More formally, we define a grayscale image as f : E → Z, E ⊆ Z2, and the
sets of images obtained by thresholding the image f at all possible values of its
pixels, called its upper-level sets, as Lk = {f ≥ k} with k ∈ Z (resp. lower-level
sets Lk = {f ≤ k}). These sets are composed of their connected components,
typically based on 4- or 8-connectivity, referred to also as peak components P.

Attribute filtering is an operation applied to these peak components by eval-
uating a logical predicate on all the peak components by comparing an attribute
α (e.g. area) with a threshold t (e.g. 300 px). An attribute, such as area, is in-
creasing if, for two nested peak components PA ⊆ PB , its value is always greater
for the larger region. The peak components not satisfying the logical predicate
are removed from the input image. Filtering with an increasing attribute results
in an attribute opening Γt (as it satisfies all the properties of an opening, i.e the
anti-extensivity, increasingness and idempotence).

A series of such openings with increasing size {Γti}, ti+1 > ti is called a size
granulometry [16, 5]. More components are removed from the image in every
successive opening and the process can be seen as consecutively sieving the
image with increasing mesh sizes. To quantify a granulometry {Γti}, the amount
of detail remaining in the image is noted. A pattern spectrum is calculated from
the granulometry by instead measuring the amount of detail removed between
each successive pair of openings.

3.2 Component Trees

In attribute morphology, the typical way to interact with connected components
of the image is to define them through a component tree, a hierarchical image
representation. We distinguish inclusion hierarchies (examples in Fig. 1) com-
prising partial image partitions as cross-sections, which are typically extrema-
oriented, and partitioning hierarchies (cf. Fig. 2) with nested image partitions as
cross-sections, which are better at representing regions at intermediate values.

The min and max-trees are dual hierarchies belonging to the class of inclusion
trees and modelling the inclusion between the peak components of the lower and
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Fig. 2. For the toy image in (a), the α-tree is displayed in (b), while the constrained
hierarchy (ω)-tree is shown in (c). The α (resp. (ω)) levels are displayed in the nodes
and indicated by their height, with regions displayed besides the nodes.

upper level sets of the image, and are well-suited for representing dark and bright
components of the image, respectively. As such, they are the ones typically used
for calculating the attribute openings and closings defining a pattern spectrum.
Examples are shown in Fig. 1(b) and (c).

The tree of shapes (ToS) [17] unifies the representation of bright and dark im-
age structures, producing a single self-dual image representation, treating bright
and dark components equally based on their absolute contrast with their back-
ground. It comprises all the peak components of both upper and lower level sets
with their holes filled, which also form an inclusion hierarchy. An example of a
tree of shapes is shown in Fig. 1(d).

The α-tree is a partitioning tree based on the local range of its components
[23, 24] (also sometimes referred to as quasi-flat zone hierarchy [9]). The finest
segmentation contained in the leaves of the tree comprises connected components
of maximum extent of pixels at the same grey level, which are then merged
according to the local neighbour similarity. As such, this hierarchy is capable of
representing both bright, dark and intermediate level regions. However, due to
the locality of the criterion used, the grey level variations within regions tend to
be much higher than α when the grey levels in the image increase and decrease
gradually, called the chaining effect [24]. An example of the hierarchy is shown
in Fig. 2(b), with the chaining effect observable for α = 2.

The most notable constrained connectivity hierarchy designed to deal with
the chaining effect is the (ω)-tree [24], which rearranges the regions of the α-
tree according to their global intensity range, removing some of the regions but
providing better grouping per level than just a local measure (cf. Fig.2(c)).
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Table 1. The different scale settings used.

Scale close middle far

Area [cm2] 15× 15 20× 20 25× 25
Camera height [cm] 60 78 94

Image resolution [px mm−1] 16.7 12.5 10

A fast implementation of granulometry and pattern spectra has been made
possible by their implementation on max-tree and min-tree image hierarchies [5,
22], as attribute filtering can be achieved through removing nodes or branches
of the tree. The attribute of interest is calculated for all the regions during
tree construction, followed by determining the first opening from the sequence
{Γti} interacting with each region which corresponds to the bin i to which the
region will contribute (cf. [25] for a more detailed description of this process).
Different measuresM can be used to describe the amount of detail contained in
the nodes removed between consecutive attribute openings (i.e. remaining detail
for the granulometry calculation), the most conventional being the area of the
removed regions (in terms of number of pixels). We evaluate the pattern spectra
calculated additionally on the other two measures proposed in the context of
attribute profiles [8], the number of changed regions, as well as the sum of gray
level values. To define attribute filters on the partitioning trees for granulometry
and pattern spectra calculation, we follow the procedures outlined in [4].

4 Dataset Description

In this section, we describe the dataset collected by the authors to study the
application of image processing techniques to soil structure assessment. Prior
to taking images, we broke apart the soil structure into constituent aggregates
in accordance with the VESS methodology [13]. To analyse a range of soils, we
selected soils of different texture and structure. Each sample weighted approxi-
mately 400 g, with precise sample weight and aggregate size distribution noted
down following the sieving process. Soil A was a calcareous sandy clay loam with
a sub-angular to medium granular structure and occasional small stones (VESS
category - Sq2). Soil B was a stone-free silt loam, sieved to 5 mm in order to
create a uniform soil structure for the analysis (VESS category - Sq1). Soil C was
a clay loam with a sub-rounded to medium granular structure (VESS category -
Sq3). Soil D was a fine granular to single grained sandy silt loam with occasional
stones (structureless). Examples of the soils are given in Table 2.

To create a uniform moisture content across samples, all samples were dried in
an oven at 105 ◦C for 24 hours, a standard procedure in soil science. Additionally,
we have also collected images of the soils C and D as-dug, i.e. before drying
them in the oven. Square surfaces of three different sizes (cf. Table 1) were
drawn on a white tray (shown in Fig. 3(a)), the soils placed in the tray and then
manipulated with brushes to fit the marked surface. This setup allowed us to
produce images at different pixel resolutions as well as examine the influence of
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Table 2. Examples of all the soil samples A – D at the far scale (area 25× 25 cm2).

Soil A B C D

As-dug – –

Dry

(a) (b) (c)

Fig. 3. The image acquisition setup: (a) the middle (20× 20 cm2) square marked on the
tray, (b) one of the original images of soil A, (c) the final image obtained by applying
the rectifying homography.

the visible background surface in the sample images. The images were taken with
a Canon EOS 40D camera, which was placed at a fixed height for a top-down view
of the samples and produced images of size 3888 px× 2592 px, cf. Fig. 3(b). The
fixed height was empirically determined to allow for maximal pixel resolution
for each of the three marked surface sizes (details in Table 1). Finally, after
taking the images, the corners of the marked square were taken as markers for
applying a homography to the images to produce a perfect top-down image as
well as discard the parts of the image not picturing the sample. The resulting
images (example in Fig. 3(c)) are of size 2500 px× 2500 px. The soils were fitted
into each of the marked surfaces twice, resulting in two different arrangements
of each soil at each scale for a total of 36 images in the dataset.

5 Experiments and Results

We design our experiments as an image retrieval problem, and assign two sets
of ground truth matches (cf. Fig.4) to examine the pattern spectra performance
in two distinct cases. In the first case (image pairs marked in blue on Fig. 4
considered correct matches), we examine the ability of pattern spectra to describe
the soil samples and allow for their re-identification after rearranging the samples
at the same scale only. In the second case (blue and green matches in Fig. 4), we
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Fig. 4. The ground truth table for both image retrieval setups. Blue - same scale, green
- all scales, grey - false matches, white - samples themselves.

Table 3. The bin limits used (with estimated area in pixels).

mesh size [mm] 0.212 2 3.15 5.0 9.5 25 50

close
side [px] 4 34 53 84 159 417 834
area [px] 13 1112 3757 6945 25 070 173 612 694 445

middle
side [px] 3 25 40 63 119 313 625
area [px] 8 625 1551 3907 14 102 97 657 390 626

far
side [px] 3 20 32 50 95 250 500
area [px] 5 400 993 2500 9025 62 500 250 000

consider re-identifying the samples at all scales present in the dataset. Posing
this as an image retrieval problem has two advantages over the alternative setups.
Firstly, we only need to change the evaluation metric (i.e. the ground truth), but
not the retrieval setup, to examine these two distinct cases, while we would have
had to train two different classifiers (one with 4 and one with 24 classes) had
we posed it as a classification problem. Secondly, since our final goal is directly
relating the pattern spectra to the physically measured soil size distributions,
we want to avoid the aggregation step often present in classification and work
with the descriptors directly.

The bin thresholds are chosen in two different ways and the performance of
the resulting descriptors compared. The upper limit for the largest bin is set to
the largest expected particle size of 50 mm (all the aggregates of all the sam-
ples A–D passed through a 50× 50 mm2 sieve). We firstly test the logarithmic
binning, which is commonly used with pattern spectra descriptors [3]. Secondly,
we also use the physical dimensions of each of the sieve meshes to calculate the
area of grid openings in pixels for each of the scales (shown in Table 3), and use
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those as bin limits. The number of bins in the logarithmic binning is set to the
same number of bins determined by the physical sieves used, b = 7.

We use 3 different inclusion trees (min and max-tree, tree of shapes) and
2 different partitioning trees (α and (ω)-tree) for pattern spectra calculation
(outlined in Sec. 3.2), as well as the sum of the histograms obtained from the min-
and max-trees (corresponding bins are summed to obtain a new histogram of the
same length; denoted as min+max ). Each image is described by its associated
pattern spectrum, normalised so that the sum of all histogram values equals 1.

After calculating a pattern spectrum for every image, query results for an
image are obtained by ranking the other database images according to descrip-
tor similarity. We quantify our retrieval performance in terms of mean Average
Precision (mAP), a measure designed specifically to evaluate ranked retrieval
results [14] and provide a single measure of quality across all recall levels of a
system for a set of multiple queries. For a single query image q, we can calculate
precision and recall considering only the first m returned images in an unordered
fashion. Precision at m is the ratio between the number of relevant images in
the set of results and the total number of images retrieved at that point, m,
while the recall at m is the ratio between the number of relevant images in the
results and the total number of relevant images for that query. AP is the Average
Precision of a query, and is equivalent to averaging the precision values obtained
for the ordered retrieval results, after retrieving each new relevant result:

AP =

K∑
m=1

precision(m)×∆ recall(m) (1)

=

∑K
m=1 precision(m)× relevant(m)

relevantTotal
,

where relevant(m) is an indicator variable indicating if the m-th retrieved image
is relevant. The mAP is calculated as the mean value of the AP for all the queries.

While we evaluated the retrieval similarity for 5 different histogram similarity
metric, we have found very similar trends between the results obtained by L1

and L2, as well as between the results obtained by χ2 and Bhattacharyya, while
the cosine distance underperformed in comparison to the other 4. Thus, the final
results are presented using L1 and χ2 distances only.

The results confirm the suitability of pattern spectra for the analysis of soil
structure, with achieving the mAP of 66.9% considering the samples at the same
scales only (cf. Table 4), and 78.2% when considering all the scales (shown in
Table 5). Out of the three measures of image content which were used, Marea

has the most consistency, performing well in both cases, with Mvolume slightly
underperforming in the single scale experiments andMcount resulting in a large
performance drop of 30% in the experiments all the scales. We also notice a
better performance of the L1 over the χ2 distance forMvolume andMarea which
are measures of the region size, while the χ2 is preferred for Mcount where the
regions are simply counted. Additionally, we can observe that using the sieve
mesh sizes to define the bin limits improves the retrieval performance compared
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Table 4. Performance of the retrieval system for the same scale ground truth. All
results are expressed in terms of mAP as percentages [%].

sieve bins logarithmic bins

content measure Mvolume Marea Mcount Mvolume Marea Mcount

distance L1 χ2 L1 χ2 L1 χ2 L1 χ2 L1 χ2 L1 χ2

α-tree 58.1 47.6 63.3 56.2 62.4 64.8 40.8 37.5 52.0 51.5 31.5 40.8
(ω)-tree 56.7 45.4 65.3 55.1 59.4 66.9 27.3 27.5 52.2 50.2 41.9 64.7
min-tree 45.8 45.6 46.5 44.3 42.7 54.4 42.6 42.1 43.9 42.4 35.4 39.8
max-tree 26.7 26.9 32.1 33.1 62.8 66.5 32.2 32.1 40.0 42.2 45.3 45.3

min + max 29.7 30.2 32.4 33.3 49.7 62.7 32.0 31.4 39.7 39.2 38.8 42.4
ToS 45.5 42.6 46.8 45.4 46.7 59.2 39.9 39.4 40.7 40.9 38.0 41.2

Table 5. Performance of the retrieval system for when all scales are considered in the
ground truth. All results are expressed in terms of mAP as percentages [%].

sieve bins logarithmic bins

content measure Mvolume Marea Mcount Mvolume Marea Mcount

distance L1 χ2 L1 χ2 L1 χ2 L1 χ2 L1 χ2 L1 χ2

α-tree 70.6 68.7 60.9 66.3 35.2 35.7 69.5 69.4 72.4 71.3 41.9 43.9
(ω)-tree 70.1 69.2 61.2 66.1 34.5 36.4 57.6 56.9 72.1 70.9 41.1 46.7
min-tree 70.8 70.8 69.9 70.07 36.9 42.3 69.5 68.5 68.3 67.5 54.0 57.7
max-tree 71.2 71.1 75.6 75.3 38.5 45.1 67.3 68.9 71.9 72.8 53.3 56.4

min + max 75.4 75.1 78.2 77.2 37.2 44.3 72.9 73.3 75.9 75.6 53.2 56.6
ToS 73.4 73.6 72.0 72.6 35.0 43.5 73.5 73.2 72.7 72.5 53.7 56.1

to the traditional logarithmic binning (except in the case of Mcount across all
scales, where performance is already low).

Finally, we can also observe that the partitioning trees greatly improve the
retrieval results of soil images at the same scale for all the metrics, while the
inclusion trees perform well only using the Mcount metric. This was expected
as we have observed the openings based on inclusion trees do not interact with
aggregates positioned at the border with the background (cf. Fig. 5), which are
correctly represented through partitioning trees and their ability to hold regions
of intermediate level. This does not hold when considering all the scales, where
the best performance was achieved using either the combination of min and max-
trees, or the tree of shapes. The overall results reaffirm the claim that including
dual information improves the descriptive power of pattern spectra [2], either by
using the min and the max-tree together or one of the self-dual representations.
The drop in performance of the partitioning trees compared to inclusion trees
at all scales, which we plan to further investigate, is however not too severe, so
in conclusion we recommend using partitioning tree based pattern spectra, and
more specifically the ones calculated from the (ω)-tree for soil structure analysis.
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(a) (b) (c) (d) (e) (f)

Fig. 5. Interaction of the tree of shapes with the aggregates positioned at the border
with the background: (a) and (d) two different arrangements of soil A at close scale
(15× 15 cm2) with two largest aggregates outlined in green, (b) and (e) filtering with
area 200 000 px, (b) and (e) filtering with area 600 000 px. The aggregates are correctly
removed in (d) where they are positioned in the middle of the image, but not in (a)
when bordering the background.

6 Conclusions and Future Work

We have compared the suitability of pattern spectra calculated from a collec-
tion of component trees for soil structure analysis, framed as an image retrieval
problem, as well as the influence of different measures of removed image detail
and histogram distances. We specifically examine the pattern spectra based on
partitioning trees, self-dual hierarchies able to represent image regions of inter-
mediate grey levels. Our experiments are designed to work with small sample
sizes, and examine the influence of scale and visible background. We confirm the
stable performance of the partitioning trees, and find that pattern spectra cal-
culated from the (ω)-tree usingMarea and compared with the L1 distance result
in the best and most stable performance on the examined retrieval problem.

As part of future work, we plan to further investigate the behaviour of par-
titioning trees when sample sizes at multiple scales are considered. Some tech-
niques towards possible performance improvement include fully removing the
background before tree construction and working on images with partial sup-
port, as well as trying different size attributes which would more accurately
reflect particles passing through differently sized sieve meshes. The final goal is
correlating the image-based granulometry to the granulometry obtained through
physical measuring in a regression setup, as well as improving the robustness of
the process for in-field deployment as opposed to working in laboratory setting.
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