62 research outputs found

    Drop-in biofuel production using fatty acid photodecarboxylase from Chlorella variabilis in the oleaginous yeast Yarrowia lipolytica.

    Get PDF
    Background: Oleaginous yeasts are potent hosts for the renewable production of lipids and harbor great potential for derived products, such as biofuels. Several promising processes have been described that produce hydrocarbon drop-in biofuels based on fatty acid decarboxylation and fatty aldehyde decarbonylation. Unfortunately, besides fatty aldehyde toxicity and high reactivity, the most investigated enzyme, aldehyde-deformylating oxygenase, shows unfavorable catalytic properties which hindered high yields in previous metabolic engineering approaches. Results: To demonstrate an alternative alkane production pathway for oleaginous yeasts, we describe the production of diesel-like, odd-chain alkanes and alkenes, by heterologously expressing a recently discovered light-driven oxidase from Chlorella variabilis (CvFAP) in Yarrowia lipolytica. Initial experiments showed that only strains engineered to have an increased pool of free fatty acids were susceptible to sufficient decarboxylation. Providing these strains with glucose and light in a synthetic medium resulted in titers of 10.9 mg/L of hydrocarbons. Using custom 3D printed labware for lighting bioreactors, and an automated pulsed glycerol fed-batch strategy, intracellular titers of 58.7 mg/L were achieved. The production of odd-numbered alkanes and alkenes with a length of 17 and 15 carbons shown in previous studies could be confirmed. Conclusions: Oleaginous yeasts such as Yarrowia lipolytica can transform renewable resources such as glycerol into fatty acids and lipids. By heterologously expressing a fatty acid photodecarboxylase from the algae Chlorella variabilis hydrocarbons were produced in several scales from microwell plate to 400 mL bioreactors. The lighting turned out to be a crucial factor in terms of growth and hydrocarbon production, therefore, the evaluation of different conditions was an important step towards a tailor-made process. In general, the developed bioprocess shows a route to the renewable production of hydrocarbons for a variety of applications ranging from being substrates for further enzymatic or chemical modification or as a drop-in biofuel blend

    The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    Get PDF
    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Five insights from the Global Burden of Disease Study 2019

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a rules-based synthesis of the available evidence on levels and trends in health outcomes, a diverse set of risk factors, and health system responses. GBD 2019 covered 204 countries and territories, as well as first administrative level disaggregations for 22 countries, from 1990 to 2019. Because GBD is highly standardised and comprehensive, spanning both fatal and non-fatal outcomes, and uses a mutually exclusive and collectively exhaustive list of hierarchical disease and injury causes, the study provides a powerful basis for detailed and broad insights on global health trends and emerging challenges. GBD 2019 incorporates data from 281 586 sources and provides more than 3.5 billion estimates of health outcome and health system measures of interest for global, national, and subnational policy dialogue. All GBD estimates are publicly available and adhere to the Guidelines on Accurate and Transparent Health Estimate Reporting. From this vast amount of information, five key insights that are important for health, social, and economic development strategies have been distilled. These insights are subject to the many limitations outlined in each of the component GBD capstone papers.Peer reviewe

    Outgrowth of neurites is a dual process

    No full text
    In neurons and neurosecretory (nerve) cells, neurite outgrowth requires the enlargement of the plasma membrane sustained by the exocytosis of specific vesicles. The well known, slow canonical form of outgrowth induced in pheochromocytoma PC12 cells by NGF, as well as the outgrowth taking place in neurons, involve vesicles positive for the vSNARE Ti-VAMP. Working in defective PC12 clones expressing high levels of the transcriptional repressor REST, we have identified now a new, rapid form of outgrowth, triggered by activation of a small GTPase, Rac1. This form is sustained by the exocytosis of another type of vesicles, taking place locally at the tip of neurite growth cones, the enlargeosomes (vSNARE: VAMP4). This new form, which is positively controlled by REST, requires the dynamics of microtubules, but not of microfilaments. Its signaling remains undefined because established second messengers, (Ca2+, DAG, cAMP) seem not involved. Using a high REST/enlargeosome-rich PC12 clone transfected with TrkA we have found that the NGF-induced outgrowth is not always slow, but can be fast in cells expressing high levels of the receptor involved, TrkA; that PC12 can express together the two distinct forms of outgrowth, canonical and new, activated independently from each other. Their comparative characterization in terms of changes in the cytoskeleton has now been initiated. The two forms are present also in neurons where the new one seems to predominate in the initial phases of development, the canonical one later on. Our results identify a new aspect of the REST impact in nerve cell specificity/function. The existence of two distinct forms of neurite outgrowth may cope better than a single form with the variable needs of nerve cells in the subsequent stages of their development

    Implicit bands in the yen/dollar exchange rate

    Get PDF
    This article attempts to identify implicit exchange rate regimes for the yen/dollar exchange rate. To that end, we apply a sequential procedure that considers both the dynamics of exchange rates and central bank interventions to data covering the period from 1971 to 2003. Our results suggest that implicit bands existed in two subperiods: April-December 1980 and March-October 1987, the latter coinciding with the Louvre Accord. Furthermore, the study of the credibility of such implicit bands indicates the high degree of confidence attributed by economic agents to the evolution of the yen/dollar exchange rate within the detected implicit band rate, thus lending further support to the relevance of such implicit bands.
    corecore